File size: 45,065 Bytes
e83f5e9
 
 
c8b8c9b
 
 
e83f5e9
 
c8b8c9b
 
 
 
 
 
 
e83f5e9
 
 
c8b8c9b
 
e83f5e9
 
 
 
 
 
 
 
 
 
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
 
 
 
 
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
c8b8c9b
 
 
 
 
 
 
e83f5e9
c8b8c9b
 
 
 
 
 
 
 
 
 
 
0e5b8f8
 
 
c8b8c9b
 
0e5b8f8
 
 
c8b8c9b
0e5b8f8
c8b8c9b
 
 
 
 
0e5b8f8
 
 
 
c8b8c9b
 
0e5b8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b8c9b
0e5b8f8
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b8f8
c8b8c9b
 
 
 
 
 
 
 
 
 
e83f5e9
 
 
 
 
 
 
 
c8b8c9b
 
 
 
e83f5e9
 
c8b8c9b
e83f5e9
c8b8c9b
 
 
 
 
 
 
 
0e5b8f8
 
e83f5e9
c8b8c9b
 
 
0e5b8f8
 
 
 
 
 
c8b8c9b
e83f5e9
c8b8c9b
 
 
 
 
 
 
0e5b8f8
 
c8b8c9b
 
 
 
e83f5e9
c8b8c9b
 
 
 
 
 
 
0e5b8f8
c8b8c9b
0e5b8f8
 
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
c8b8c9b
 
e83f5e9
c8b8c9b
e83f5e9
c8b8c9b
 
 
 
 
 
 
 
 
 
e83f5e9
 
c8b8c9b
 
e83f5e9
c8b8c9b
e83f5e9
 
 
 
 
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b8f8
 
 
 
 
 
 
 
 
 
c8b8c9b
0e5b8f8
 
 
 
 
 
 
 
 
e83f5e9
 
 
c8b8c9b
e83f5e9
c8b8c9b
 
e83f5e9
 
 
 
 
 
c8b8c9b
 
 
 
 
 
 
 
 
 
e83f5e9
c8b8c9b
 
 
0e5b8f8
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b8f8
c8b8c9b
 
 
 
0e5b8f8
 
c8b8c9b
 
 
0e5b8f8
c8b8c9b
 
 
 
 
 
 
0e5b8f8
c8b8c9b
 
 
 
 
 
 
e83f5e9
c8b8c9b
e83f5e9
c8b8c9b
 
e83f5e9
 
 
 
 
 
c8b8c9b
 
 
e83f5e9
c8b8c9b
 
e83f5e9
 
0e5b8f8
e83f5e9
c8b8c9b
e83f5e9
 
c8b8c9b
 
 
 
0e5b8f8
e83f5e9
0e5b8f8
 
c8b8c9b
0e5b8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
 
 
 
 
 
c8b8c9b
 
 
e83f5e9
 
 
 
 
 
c8b8c9b
e83f5e9
 
c8b8c9b
 
e83f5e9
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
 
 
 
c8b8c9b
 
 
 
0e5b8f8
c8b8c9b
e83f5e9
 
0e5b8f8
 
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
 
 
 
 
 
 
 
 
c8b8c9b
 
e83f5e9
 
 
 
 
 
 
 
 
 
 
c8b8c9b
 
 
 
 
 
e83f5e9
 
 
 
 
c8b8c9b
e83f5e9
c8b8c9b
 
e83f5e9
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
c8b8c9b
 
 
 
0e5b8f8
c8b8c9b
e83f5e9
c8b8c9b
 
e83f5e9
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83f5e9
c8b8c9b
 
e83f5e9
 
 
0e5b8f8
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b8f8
 
 
 
 
c8b8c9b
 
 
 
 
0e5b8f8
c8b8c9b
 
 
 
 
0e5b8f8
 
 
 
 
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b8c9b
 
 
0e5b8f8
c8b8c9b
 
 
 
 
 
 
 
0e5b8f8
c8b8c9b
 
0e5b8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b8c9b
 
 
 
0e5b8f8
 
 
 
 
 
 
 
 
c8b8c9b
0e5b8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b8c9b
 
 
 
0e5b8f8
 
 
 
 
c8b8c9b
 
 
 
0e5b8f8
c8b8c9b
0e5b8f8
c8b8c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b8f8
c8b8c9b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
import os
import shutil
import uuid
import sys
import traceback
from fastapi import APIRouter, UploadFile, File, Form, HTTPException, BackgroundTasks, Depends, Query
from fastapi.responses import JSONResponse
from typing import Optional, List, Dict, Any
from sqlalchemy.orm import Session
import os.path
import logging
import tempfile
import time
import json
from datetime import datetime

from app.utils.pdf_processor import PDFProcessor
from app.models.pdf_models import PDFResponse, DeleteDocumentRequest, DocumentsListResponse
from app.database.postgresql import get_db
from app.database.models import VectorDatabase, Document, VectorStatus, ApiKey, DocumentContent
from app.api.pdf_websocket import (
    send_pdf_upload_started, 
    send_pdf_upload_progress, 
    send_pdf_upload_completed,
    send_pdf_upload_failed,
    send_pdf_delete_started,
    send_pdf_delete_completed,
    send_pdf_delete_failed
)

# Setup logger
logger = logging.getLogger(__name__)

# Add a stream handler for PDF debug logging
pdf_debug_logger = logging.getLogger("pdf_debug_api")
pdf_debug_logger.setLevel(logging.DEBUG)

# Check if a stream handler already exists, add one if not
if not any(isinstance(h, logging.StreamHandler) for h in pdf_debug_logger.handlers):
    stream_handler = logging.StreamHandler(sys.stdout)
    stream_handler.setLevel(logging.INFO)
    pdf_debug_logger.addHandler(stream_handler)

# Initialize router
router = APIRouter(
    prefix="/pdf",
    tags=["PDF Processing"],
)

# Constants - Use system temp directory instead of creating our own
TEMP_UPLOAD_DIR = tempfile.gettempdir()
STORAGE_DIR = tempfile.gettempdir()  # Also use system temp for storage

USE_MOCK_MODE = False  # Disabled - using real database with improved connection handling
logger.info(f"PDF API starting with USE_MOCK_MODE={USE_MOCK_MODE}")

# Helper function to log with timestamp
def log_with_timestamp(message: str, level: str = "info", error: Exception = None):
    """Add timestamps to log messages and log to the PDF debug logger if available"""
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    full_message = f"{timestamp} - {message}"
    
    if level.lower() == "debug":
        logger.debug(full_message)
        pdf_debug_logger.debug(full_message)
    elif level.lower() == "info":
        logger.info(full_message)
        pdf_debug_logger.info(full_message)
    elif level.lower() == "warning":
        logger.warning(full_message)
        pdf_debug_logger.warning(full_message)
    elif level.lower() == "error":
        logger.error(full_message)
        pdf_debug_logger.error(full_message)
        if error:
            logger.error(traceback.format_exc())
            pdf_debug_logger.error(traceback.format_exc())
    else:
        logger.info(full_message)
        pdf_debug_logger.info(full_message)

# Helper function to log debug information during upload
def log_upload_debug(correlation_id: str, message: str, error: Exception = None):
    """Log detailed debug information about PDF uploads"""
    pdf_debug_logger.debug(f"[{correlation_id}] {message}")
    if error:
        pdf_debug_logger.error(f"[{correlation_id}] Error: {str(error)}")
        pdf_debug_logger.error(traceback.format_exc())

# Helper function to send progress updates
async def send_progress_update(user_id, file_id, step, progress=0.0, message=""):
    """Send PDF processing progress updates via WebSocket"""
    try:
        await send_pdf_upload_progress(user_id, file_id, step, progress, message)
    except Exception as e:
        logger.error(f"Error sending progress update: {e}")
        logger.error(traceback.format_exc())

# Function with fixed indentation for the troublesome parts
async def handle_pdf_processing_result(result, correlation_id, user_id, file_id, filename, document, vector_status, 
                                    vector_database_id, temp_file_path, db, is_pdf):
    """Process the result of PDF processing and update database records"""
    # If successful, move file to permanent storage
    if result.get('success'):
        try:
            storage_path = os.path.join(STORAGE_DIR, f"{file_id}{'.pdf' if is_pdf else '.txt'}")
            shutil.move(temp_file_path, storage_path)
            log_upload_debug(correlation_id, f"Moved file to storage at {storage_path}")
        except Exception as move_error:
            log_upload_debug(correlation_id, f"Error moving file to storage: {move_error}", move_error)
        
        # Update status in PostgreSQL
        if vector_database_id and document and vector_status:
            try:
                log_upload_debug(correlation_id, f"Updating vector status to 'completed' for document ID {document.id}")
                
                # Update the vector status with the result document_id (important for later deletion)
                result_document_id = result.get('document_id') 
                
                vector_status.status = "completed"
                vector_status.embedded_at = datetime.now()
                
                # Critical: Store the correct vector ID for future deletion
                # This can be either the original file_id or the result_document_id
                if result_document_id and result_document_id != file_id:
                    # If Pinecone returned a specific document_id, use that
                    vector_status.vector_id = result_document_id
                    log_upload_debug(correlation_id, f"Updated vector_id to {result_document_id} (from result)")
                elif file_id:
                    # Make sure file_id is stored as the vector_id
                    vector_status.vector_id = file_id
                    log_upload_debug(correlation_id, f"Updated vector_id to {file_id} (from file_id)")
                
                # Also ensure we store some backup identifiers in case the primary one fails
                # Store the document name as a secondary identifier
                vector_status.document_name = document.name
                log_upload_debug(correlation_id, f"Stored document_name '{document.name}' in vector status for backup")
                
                # Mark document as embedded
                document.is_embedded = True
                
                db.commit()
                log_upload_debug(correlation_id, f"Database status updated successfully")
            except Exception as db_error:
                log_upload_debug(correlation_id, f"Error updating database status: {db_error}", db_error)
        
        # Send completion notification via WebSocket
        if user_id:
            try:
                await send_pdf_upload_completed(
                    user_id,
                    file_id,
                    filename,
                    result.get('chunks_processed', 0)
                )
                log_upload_debug(correlation_id, f"Sent upload completed notification to user {user_id}")
            except Exception as ws_error:
                log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
            
        # Add document information to the result
        if document:
            result["document_database_id"] = document.id
    else:
        log_upload_debug(correlation_id, f"PDF processing failed: {result.get('error', 'Unknown error')}")
        
        # Update error status in PostgreSQL
        if vector_database_id and document and vector_status:
            try:
                log_upload_debug(correlation_id, f"Updating vector status to 'failed' for document ID {document.id}")
                vector_status.status = "failed"
                vector_status.error_message = result.get('error', 'Unknown error')
                db.commit()
                log_upload_debug(correlation_id, f"Database status updated for failure")
            except Exception as db_error:
                log_upload_debug(correlation_id, f"Error updating database status for failure: {db_error}", db_error)
            
        # Send failure notification via WebSocket
        if user_id:
            try:
                await send_pdf_upload_failed(
                    user_id,
                    file_id,
                    filename,
                    result.get('error', 'Unknown error')
                )
                log_upload_debug(correlation_id, f"Sent upload failed notification to user {user_id}")
            except Exception as ws_error:
                log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
        
    # Cleanup: delete temporary file if it still exists
    if temp_file_path and os.path.exists(temp_file_path):
        try:
            os.remove(temp_file_path)
            log_upload_debug(correlation_id, f"Removed temporary file {temp_file_path}")
        except Exception as cleanup_error:
            log_upload_debug(correlation_id, f"Error removing temporary file: {cleanup_error}", cleanup_error)
    
    log_upload_debug(correlation_id, f"Upload request completed with success={result.get('success', False)}")
    return result

# Endpoint for uploading and processing PDFs
@router.post("/upload", response_model=PDFResponse)
async def upload_pdf(
    file: UploadFile = File(...),
    namespace: str = Form("Default"),
    index_name: str = Form("testbot768"),
    title: Optional[str] = Form(None),
    description: Optional[str] = Form(None),
    user_id: Optional[str] = Form(None),
    vector_database_id: Optional[int] = Form(None),
    content_type: Optional[str] = Form(None),  # Add content_type parameter
    background_tasks: BackgroundTasks = None,
    db: Session = Depends(get_db)
):
    """
    Upload and process PDF file to create embeddings and store in Pinecone
    
    - **file**: PDF file to process
    - **namespace**: Namespace in Pinecone to store embeddings (default: "Default")
    - **index_name**: Name of Pinecone index (default: "testbot768")
    - **title**: Document title (optional)
    - **description**: Document description (optional)
    - **user_id**: User ID for WebSocket status updates
    - **vector_database_id**: ID of vector database in PostgreSQL (optional)
    - **content_type**: Content type of the file (optional)
    
    Note: Mock mode has been permanently removed and the system always operates in real mode
    """
    # Generate request ID for tracking
    correlation_id = str(uuid.uuid4())[:8]
    logger.info(f"[{correlation_id}] PDF upload request received: ns={namespace}, index={index_name}, user={user_id}")
    log_upload_debug(correlation_id, f"Upload request: vector_db_id={vector_database_id}")
    
    # Variables that might need cleanup in case of error
    temp_file_path = None
    document = None
    vector_status = None
    
    try:
        # Check file type - accept both PDF and plaintext for testing
        is_pdf = file.filename.lower().endswith('.pdf')
        is_text = file.filename.lower().endswith(('.txt', '.md', '.html'))
        
        log_upload_debug(correlation_id, f"File type check: is_pdf={is_pdf}, is_text={is_text}, filename={file.filename}")
        
        if not (is_pdf or is_text):
            log_upload_debug(correlation_id, f"Rejecting non-PDF file: {file.filename}")
            raise HTTPException(status_code=400, detail="Only PDF files are accepted")
        
        # If vector_database_id provided, get info from PostgreSQL
        api_key = None
        vector_db = None
        
        if vector_database_id:
            log_upload_debug(correlation_id, f"Looking up vector database ID {vector_database_id}")
            
            vector_db = db.query(VectorDatabase).filter(
                VectorDatabase.id == vector_database_id,
                VectorDatabase.status == "active"
            ).first()
            
            if not vector_db:
                log_upload_debug(correlation_id, f"Vector database {vector_database_id} not found or inactive")
                raise HTTPException(status_code=404, detail="Vector database not found or inactive")
            
            log_upload_debug(correlation_id, f"Found vector database: id={vector_db.id}, name={vector_db.name}, index={vector_db.pinecone_index}")
            
            # Use vector database information
            # Try to get API key from relationship
            log_upload_debug(correlation_id, f"Trying to get API key for vector database {vector_database_id}")
            
            # Log available attributes
            vector_db_attrs = dir(vector_db)
            log_upload_debug(correlation_id, f"Vector DB attributes: {vector_db_attrs}")
            
            if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
                log_upload_debug(correlation_id, f"Using API key from relationship for vector database ID {vector_database_id}")
                log_upload_debug(correlation_id, f"api_key_ref type: {type(vector_db.api_key_ref)}")
                log_upload_debug(correlation_id, f"api_key_ref attributes: {dir(vector_db.api_key_ref)}")
                
                if hasattr(vector_db.api_key_ref, 'key_value'):
                    api_key = vector_db.api_key_ref.key_value
                    # Log first few chars of API key for debugging
                    key_prefix = api_key[:4] + "..." if api_key and len(api_key) > 4 else "invalid/empty"
                    log_upload_debug(correlation_id, f"API key retrieved: {key_prefix}, length: {len(api_key) if api_key else 0}")
                    logger.info(f"[{correlation_id}] Using API key from relationship for vector database ID {vector_database_id}")
                else:
                    log_upload_debug(correlation_id, f"api_key_ref does not have key_value attribute")
            elif hasattr(vector_db, 'api_key') and vector_db.api_key:
                # Fallback to direct api_key if needed (deprecated)
                api_key = vector_db.api_key
                key_prefix = api_key[:4] + "..." if api_key and len(api_key) > 4 else "invalid/empty"
                log_upload_debug(correlation_id, f"Using deprecated direct api_key: {key_prefix}")
                logger.warning(f"[{correlation_id}] Using deprecated direct api_key for vector database ID {vector_database_id}")
            else:
                log_upload_debug(correlation_id, "No API key found in vector database")
            
            # Use index from vector database
            index_name = vector_db.pinecone_index
            log_upload_debug(correlation_id, f"Using index name '{index_name}' from vector database")
            logger.info(f"[{correlation_id}] Using index name '{index_name}' from vector database")
        
        # Generate file_id and save temporary file
        file_id = str(uuid.uuid4())
        temp_file_path = os.path.join(TEMP_UPLOAD_DIR, f"{file_id}{'.pdf' if is_pdf else '.txt'}")
        log_upload_debug(correlation_id, f"Generated file_id: {file_id}, temp path: {temp_file_path}")
        
        # Send notification of upload start via WebSocket if user_id provided
        if user_id:
            try:
                await send_pdf_upload_started(user_id, file.filename, file_id)
                log_upload_debug(correlation_id, f"Sent upload started notification to user {user_id}")
            except Exception as ws_error:
                log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
        
        # Save file
        log_upload_debug(correlation_id, f"Reading file content")
        file_content = await file.read()
        log_upload_debug(correlation_id, f"File size: {len(file_content)} bytes")
        
        with open(temp_file_path, "wb") as buffer:
            buffer.write(file_content)
        log_upload_debug(correlation_id, f"File saved to {temp_file_path}")
            
        # Create metadata
        metadata = {
            "filename": file.filename,
            "content_type": file.content_type
        }
        
        # Use provided content_type or fallback to file.content_type
        actual_content_type = content_type or file.content_type
        log_upload_debug(correlation_id, f"Using content_type: {actual_content_type}")
        
        if not actual_content_type:
            # Fallback content type based on file extension
            if is_pdf:
                actual_content_type = "application/pdf"
            elif is_text:
                actual_content_type = "text/plain"
            else:
                actual_content_type = "application/octet-stream"
                
            log_upload_debug(correlation_id, f"No content_type provided, using fallback: {actual_content_type}")
            
        metadata["content_type"] = actual_content_type
        
        # Use provided title or filename as document name
        document_name = title or file.filename
        
        # Verify document name is unique within this vector database
        if vector_database_id:
            # Check if a document with this name already exists in this vector database
            existing_doc = db.query(Document).filter(
                Document.name == document_name,
                Document.vector_database_id == vector_database_id
            ).first()
            
            if existing_doc:
                # Make the name unique by appending timestamp
                timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                base_name, extension = os.path.splitext(document_name)
                document_name = f"{base_name}_{timestamp}{extension}"
                log_upload_debug(correlation_id, f"Document name already exists, using unique name: {document_name}")
        
        metadata["title"] = document_name
        
        if description:
            metadata["description"] = description
        
        # Send progress update via WebSocket
        if user_id:
            try:
                await send_progress_update(
                user_id, 
                file_id, 
                "file_preparation", 
                0.2, 
                "File saved, preparing for processing"
            )
                log_upload_debug(correlation_id, f"Sent file preparation progress to user {user_id}")
            except Exception as ws_error:
                log_upload_debug(correlation_id, f"Error sending progress update: {ws_error}", ws_error)
        
        # Create document record - do this regardless of mock mode
        document = None
        vector_status = None
        
        if vector_database_id and vector_db:
            log_upload_debug(correlation_id, f"Creating PostgreSQL records for document with vector_database_id={vector_database_id}")
            
            # Create document record without file content
            try:
                document = Document(
                    name=document_name,  # Use the (potentially) modified document name
                    file_type="pdf" if is_pdf else "text",
                    content_type=actual_content_type,  # Use the actual_content_type here
                    size=len(file_content),
                    is_embedded=False,
                    vector_database_id=vector_database_id
                )
                db.add(document)
                db.commit()
                db.refresh(document)
                log_upload_debug(correlation_id, f"Created document record: id={document.id}")
            except Exception as doc_error:
                log_upload_debug(correlation_id, f"Error creating document record: {doc_error}", doc_error)
                raise
            
            # Create document content record to store binary data separately
            try:
                document_content = DocumentContent(
                    document_id=document.id,
                    file_content=file_content
                )
                db.add(document_content)
                db.commit()
                log_upload_debug(correlation_id, f"Created document content record for document ID {document.id}")
            except Exception as content_error:
                log_upload_debug(correlation_id, f"Error creating document content: {content_error}", content_error)
                raise
            
            # Create vector status record - store file_id as the vector_id for deletion later
            try:
                vector_status = VectorStatus(
                    document_id=document.id,
                    vector_database_id=vector_database_id,
                    status="pending",
                    vector_id=file_id  # Store the document UUID as vector_id for later deletion
                )
                db.add(vector_status)
                db.commit()
                log_upload_debug(correlation_id, f"Created vector status record for document ID {document.id} with vector_id={file_id}")
            except Exception as status_error:
                log_upload_debug(correlation_id, f"Error creating vector status: {status_error}", status_error)
                raise
            
            logger.info(f"[{correlation_id}] Created document ID {document.id} and vector status in PostgreSQL")
            
        # Initialize PDF processor with correct parameters
        log_upload_debug(correlation_id, f"Initializing PDFProcessor: index={index_name}, vector_db_id={vector_database_id}")
        processor = PDFProcessor(
            index_name=index_name, 
            namespace=namespace, 
            api_key=api_key, 
            vector_db_id=vector_database_id,
            correlation_id=correlation_id
        )
        
        # Send embedding start notification via WebSocket
        if user_id:
            try:
                await send_progress_update(
                user_id, 
                file_id, 
                "embedding_start", 
                0.4, 
                "Starting to process PDF and create embeddings"
            )
                log_upload_debug(correlation_id, f"Sent embedding start notification to user {user_id}")
            except Exception as ws_error:
                log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
        
        # Process PDF and create embeddings with progress callback
        log_upload_debug(correlation_id, f"Processing PDF with file_path={temp_file_path}, document_id={file_id}")
        result = await processor.process_pdf(
            file_path=temp_file_path,
            document_id=file_id,  # Use UUID as document_id for Pinecone
            metadata=metadata,
            progress_callback=send_progress_update if user_id else None
        )
        
        log_upload_debug(correlation_id, f"PDF processing result: {result}")
        
        # Handle PDF processing result
        return await handle_pdf_processing_result(result, correlation_id, user_id, file_id, file.filename, document, vector_status, 
                                                vector_database_id, temp_file_path, db, is_pdf)
    except Exception as e:
        log_upload_debug(correlation_id, f"Error in upload_pdf: {str(e)}", e)
        logger.exception(f"[{correlation_id}] Error in upload_pdf: {str(e)}")
        
        # Cleanup on error
        if os.path.exists(temp_file_path):
            try:
                os.remove(temp_file_path)
                log_upload_debug(correlation_id, f"Cleaned up temp file after error: {temp_file_path}")
            except Exception as cleanup_error:
                log_upload_debug(correlation_id, f"Error cleaning up temporary file: {cleanup_error}", cleanup_error)
        
        # Update error status in PostgreSQL
        if vector_database_id and vector_status:
            try:
                vector_status.status = "failed"
                vector_status.error_message = str(e)
                db.commit()
                log_upload_debug(correlation_id, f"Updated database with error status")
            except Exception as db_error:
                log_upload_debug(correlation_id, f"Error updating database with error status: {db_error}", db_error)
            
        # Send failure notification via WebSocket
        if user_id and file_id:
            try:
                await send_pdf_upload_failed(
                    user_id,
                    file_id,
                    file.filename,
                    str(e)
                )
                log_upload_debug(correlation_id, f"Sent failure notification for exception")
            except Exception as ws_error:
                log_upload_debug(correlation_id, f"Error sending WebSocket notification for failure: {ws_error}", ws_error)
            
        log_upload_debug(correlation_id, f"Upload request failed with exception: {str(e)}")
        return PDFResponse(
            success=False,
            error=str(e)
        )

# Endpoint xóa tài liệu
@router.delete("/namespace", response_model=PDFResponse)
async def delete_namespace(
    namespace: str = "Default",
    index_name: str = "testbot768",
    vector_database_id: Optional[int] = None,
    user_id: Optional[str] = None,
    db: Session = Depends(get_db)
):
    """
    Xóa toàn bộ embeddings trong một namespace từ Pinecone (tương ứng xoá namespace)

    - **namespace**: Namespace trong Pinecone (mặc định: "Default")
    - **index_name**: Tên index Pinecone (mặc định: "testbot768")
    - **vector_database_id**: ID của vector database trong PostgreSQL (nếu có)
    - **user_id**: ID của người dùng để cập nhật trạng thái qua WebSocket
    """
    logger.info(f"Delete namespace request: namespace={namespace}, index={index_name}, vector_db_id={vector_database_id}")
    
    try:
        # Nếu có vector_database_id, lấy thông tin từ PostgreSQL
        api_key = None
        vector_db = None

        if vector_database_id:
            vector_db = db.query(VectorDatabase).filter(
                VectorDatabase.id == vector_database_id,
                VectorDatabase.status == "active"
            ).first()
            if not vector_db:
                return PDFResponse(
                    success=False,
                    error=f"Vector database with ID {vector_database_id} not found or inactive"
                )
            
            # Use index from vector database
            index_name = vector_db.pinecone_index
            
            # Get API key
            if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
                api_key = vector_db.api_key_ref.key_value
            elif hasattr(vector_db, 'api_key') and vector_db.api_key:
                api_key = vector_db.api_key
            
            # Use namespace based on vector database ID
            namespace = f"vdb-{vector_database_id}" if vector_database_id else namespace
            logger.info(f"Using namespace '{namespace}' based on vector database ID")
            
        # Gửi thông báo bắt đầu xóa qua WebSocket
        if user_id:
            await send_pdf_delete_started(user_id, namespace)
            
        processor = PDFProcessor(
            index_name=index_name, 
            namespace=namespace,
            api_key=api_key,
            vector_db_id=vector_database_id
        )
        result = await processor.delete_namespace()
        
        # If successful and vector_database_id, update PostgreSQL to reflect the deletion
        if result.get('success') and vector_database_id:
            try:
                # Update vector statuses for this database
                affected_count = db.query(VectorStatus).filter(
                    VectorStatus.vector_database_id == vector_database_id,
                    VectorStatus.status != "deleted"
                ).update({"status": "deleted", "updated_at": datetime.now()})
                
                # Update document embedding status
                db.query(Document).filter(
                    Document.vector_database_id == vector_database_id,
                    Document.is_embedded == True
                ).update({"is_embedded": False})
                
                db.commit()
                logger.info(f"Updated {affected_count} vector statuses to 'deleted'")
                
                # Include this info in the result
                result["updated_records"] = affected_count
            except Exception as db_error:
                logger.error(f"Error updating PostgreSQL records after namespace deletion: {db_error}")
                result["postgresql_update_error"] = str(db_error)
        
        # Gửi thông báo kết quả qua WebSocket
        if user_id:
            if result.get('success'):
                await send_pdf_delete_completed(user_id, namespace)
            else:
                await send_pdf_delete_failed(user_id, namespace, result.get('error', 'Unknown error'))
                
        return result
    except Exception as e:
        logger.exception(f"Error in delete_namespace: {str(e)}")
        
        # Gửi thông báo lỗi qua WebSocket
        if user_id:
            await send_pdf_delete_failed(user_id, namespace, str(e))
            
        return PDFResponse(
            success=False,
            error=str(e)
        )

# Endpoint lấy danh sách tài liệu
@router.get("/documents", response_model=DocumentsListResponse)
async def get_documents(
    namespace: str = "Default", 
    index_name: str = "testbot768",
    vector_database_id: Optional[int] = None,
    db: Session = Depends(get_db)
):
    """
    Lấy thông tin về tất cả tài liệu đã được embed
    
    - **namespace**: Namespace trong Pinecone (mặc định: "Default")
    - **index_name**: Tên index Pinecone (mặc định: "testbot768")
    - **vector_database_id**: ID của vector database trong PostgreSQL (nếu có)
    """
    logger.info(f"Get documents request: namespace={namespace}, index={index_name}, vector_db_id={vector_database_id}")
    
    try:
        # Nếu có vector_database_id, lấy thông tin từ PostgreSQL
        api_key = None
        vector_db = None

        if vector_database_id:
            vector_db = db.query(VectorDatabase).filter(
                VectorDatabase.id == vector_database_id,
                VectorDatabase.status == "active"
            ).first()
            
            if not vector_db:
                return DocumentsListResponse(
                    success=False,
                    error=f"Vector database with ID {vector_database_id} not found or inactive"
                )
                
            # Use index from vector database
            index_name = vector_db.pinecone_index
            
            # Get API key
            if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
                api_key = vector_db.api_key_ref.key_value
            elif hasattr(vector_db, 'api_key') and vector_db.api_key:
                api_key = vector_db.api_key
                
            # Use namespace based on vector database ID
            namespace = f"vdb-{vector_database_id}" if vector_database_id else namespace
            logger.info(f"Using namespace '{namespace}' based on vector database ID")
            
        # Khởi tạo PDF processor
        processor = PDFProcessor(
            index_name=index_name, 
            namespace=namespace,
            api_key=api_key,
            vector_db_id=vector_database_id
        )
        
        # Lấy danh sách documents từ Pinecone
        pinecone_result = await processor.list_documents()
        
        # If vector_database_id is provided, also fetch from PostgreSQL
        if vector_database_id:
            try:
                # Get all successfully embedded documents for this vector database
                documents = db.query(Document).join(
                    VectorStatus, Document.id == VectorStatus.document_id
                ).filter(
                    Document.vector_database_id == vector_database_id,
                    Document.is_embedded == True,
                    VectorStatus.status == "completed"
                ).all()
                
                # Add document info to the result
                if documents:
                    pinecone_result["postgresql_documents"] = [
                        {
                            "id": doc.id,
                            "name": doc.name,
                            "file_type": doc.file_type,
                            "content_type": doc.content_type,
                            "created_at": doc.created_at.isoformat() if doc.created_at else None
                        }
                        for doc in documents
                    ]
                    pinecone_result["postgresql_document_count"] = len(documents)
            except Exception as db_error:
                logger.error(f"Error fetching PostgreSQL documents: {db_error}")
                pinecone_result["postgresql_error"] = str(db_error)
        
        return pinecone_result
    except Exception as e:
        logger.exception(f"Error in get_documents: {str(e)}")
        
        return DocumentsListResponse(
            success=False,
            error=str(e)
        )

# Health check endpoint for PDF API
@router.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "version": "1.0.0",
        "message": "PDF API is running"
    }

# Document deletion endpoint
@router.delete("/document", response_model=PDFResponse)
async def delete_document(
    document_id: str,
    namespace: str = "Default",
    index_name: str = "testbot768",
    vector_database_id: Optional[int] = None,
    user_id: Optional[str] = None,
    db: Session = Depends(get_db)
):
    """
    Delete vectors for a specific document from the vector database
    
    This endpoint can be called in two ways:
    1. With the PostgreSQL document ID - will look up the actual vector_id first
    2. With the actual vector_id directly - when called from the PostgreSQL document deletion endpoint
    
    - **document_id**: ID of the document to delete (can be PostgreSQL document ID or Pinecone vector_id)
    - **namespace**: Namespace in the vector database (default: "Default")
    - **index_name**: Name of the vector index (default: "testbot768")
    - **vector_database_id**: ID of vector database in PostgreSQL (optional)
    - **user_id**: User ID for WebSocket status updates (optional)
    """
    logger.info(f"Delete document request: document_id={document_id}, namespace={namespace}, index={index_name}, vector_db_id={vector_database_id}")
    
    try:
        # If vector_database_id is provided, get info from PostgreSQL
        api_key = None
        vector_db = None
        pinecone_document_id = document_id  # Default to the provided document_id
        document_to_delete = None
        vector_status_to_update = None
        document_found = False  # Flag to track if document was found
        vector_id_found = False  # Flag to track if a valid vector ID was found

        if vector_database_id:
            vector_db = db.query(VectorDatabase).filter(
                VectorDatabase.id == vector_database_id,
                VectorDatabase.status == "active"
            ).first()
            if not vector_db:
                return PDFResponse(
                    success=False,
                    error=f"Vector database with ID {vector_database_id} not found or inactive"
                )
            
            # Use index from vector database
            index_name = vector_db.pinecone_index
            
            # Get API key
            if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
                api_key = vector_db.api_key_ref.key_value
            elif hasattr(vector_db, 'api_key') and vector_db.api_key:
                api_key = vector_db.api_key
            
            # Use namespace based on vector database ID
            namespace = f"vdb-{vector_database_id}" if vector_database_id else namespace
            logger.info(f"Using namespace '{namespace}' based on vector database ID")
            
            # Check if document_id is a numeric database ID or document name
            if document_id.isdigit():
                # Try to find the document in PostgreSQL by its ID
                db_document_id = int(document_id)
                document_to_delete = db.query(Document).filter(Document.id == db_document_id).first()
                
                if document_to_delete:
                    document_found = True
                    logger.info(f"Found document in database: id={document_to_delete.id}, name={document_to_delete.name}")
                    
                    # Look for vector status to find the Pinecone vector_id
                    vector_status_to_update = db.query(VectorStatus).filter(
                        VectorStatus.document_id == document_to_delete.id,
                        VectorStatus.vector_database_id == vector_database_id
                    ).first()
                    
                    if vector_status_to_update and vector_status_to_update.vector_id:
                        pinecone_document_id = vector_status_to_update.vector_id
                        vector_id_found = True
                        logger.info(f"Using vector_id '{pinecone_document_id}' from vector status")
                    else:
                        # Fallback options if vector_id is not directly found
                        pinecone_document_id = document_to_delete.name
                        logger.info(f"Vector ID not found in status, using document name '{pinecone_document_id}' as fallback")
                else:
                    logger.warning(f"Document with ID {db_document_id} not found in database. Using ID as is.")
            else:
                # Try to find document by name/title
                document_to_delete = db.query(Document).filter(
                    Document.name == document_id,
                    Document.vector_database_id == vector_database_id
                ).first()
                
                if document_to_delete:
                    document_found = True
                    logger.info(f"Found document by name: id={document_to_delete.id}, name={document_to_delete.name}")
                    
                    # Get vector status for this document
                    vector_status_to_update = db.query(VectorStatus).filter(
                        VectorStatus.document_id == document_to_delete.id,
                        VectorStatus.vector_database_id == vector_database_id
                    ).first()
                    
                    if vector_status_to_update and vector_status_to_update.vector_id:
                        pinecone_document_id = vector_status_to_update.vector_id
                        vector_id_found = True
                        logger.info(f"Using vector_id '{pinecone_document_id}' from vector status")
            
        # Send notification of deletion start via WebSocket if user_id provided
        if user_id:
            try:
                await send_pdf_delete_started(user_id, pinecone_document_id)
            except Exception as ws_error:
                logger.error(f"Error sending WebSocket notification: {ws_error}")
        
        # Initialize PDF processor
        processor = PDFProcessor(
            index_name=index_name, 
            namespace=namespace, 
            api_key=api_key, 
            vector_db_id=vector_database_id
        )
        
        # Delete document vectors using the pinecone_document_id and additional metadata
        additional_metadata = {}
        if document_to_delete:
            # Add document name as title for searching
            additional_metadata["document_name"] = document_to_delete.name
        
        result = await processor.delete_document(pinecone_document_id, additional_metadata)
        
        # Check if vectors were actually deleted or found
        vectors_deleted = result.get('vectors_deleted', 0)
        vectors_found = result.get('vectors_found', False)
        
        # If no document was found in PostgreSQL and no vectors were found/deleted in Pinecone
        if not document_found and not vectors_found:
            result['success'] = False  # Override success to false
            result['error'] = f"Document ID {document_id} not found in PostgreSQL or Pinecone"
            
            # Send notification of deletion failure via WebSocket if user_id provided
            if user_id:
                try:
                    await send_pdf_delete_failed(user_id, document_id, result['error'])
                except Exception as ws_error:
                    logger.error(f"Error sending WebSocket notification: {ws_error}")
                    
            return result
        
        # If successful and vector_database_id is provided, update PostgreSQL records
        if result.get('success') and vector_database_id:
            try:
                # Update vector status if we found it earlier
                if vector_status_to_update:
                    vector_status_to_update.status = "deleted"
                    db.commit()
                    result["postgresql_updated"] = True
                    logger.info(f"Updated vector status for document ID {document_to_delete.id if document_to_delete else document_id} to 'deleted'")
                else:
                    # If we didn't find it earlier, try again with more search options
                    document = None
                    
                    if document_id.isdigit():
                        # If the original document_id was numeric, use it directly
                        document = db.query(Document).filter(Document.id == int(document_id)).first()
                    
                    if not document:
                        # Find document by vector ID if it exists
                        document = db.query(Document).join(
                            VectorStatus, Document.id == VectorStatus.document_id
                        ).filter(
                            Document.vector_database_id == vector_database_id,
                            VectorStatus.vector_id == pinecone_document_id
                        ).first()
                    
                    if not document:
                        # Try finding by name
                        document = db.query(Document).filter(
                            Document.vector_database_id == vector_database_id,
                            Document.name == pinecone_document_id
                        ).first()
                    
                    if document:
                        # Update vector status
                        vector_status = db.query(VectorStatus).filter(
                            VectorStatus.document_id == document.id,
                            VectorStatus.vector_database_id == vector_database_id
                        ).first()
                        
                        if vector_status:
                            vector_status.status = "deleted"
                            db.commit()
                            result["postgresql_updated"] = True
                            logger.info(f"Updated vector status for document ID {document.id} to 'deleted'")
                    else:
                        logger.warning(f"Could not find document record for deletion confirmation. Document ID: {document_id}, Vector ID: {pinecone_document_id}")
            except Exception as db_error:
                logger.error(f"Error updating PostgreSQL records: {db_error}")
                result["postgresql_error"] = str(db_error)
        
        # Add information about what was found and deleted
        result["document_found_in_db"] = document_found
        result["vector_id_found"] = vector_id_found
        result["vectors_deleted"] = vectors_deleted
        
        # Send notification of deletion completion via WebSocket if user_id provided
        if user_id:
            try:
                if result.get('success'):
                    await send_pdf_delete_completed(user_id, pinecone_document_id)
                else:
                    await send_pdf_delete_failed(user_id, pinecone_document_id, result.get('error', 'Unknown error'))
            except Exception as ws_error:
                logger.error(f"Error sending WebSocket notification: {ws_error}")
        
        return result
    except Exception as e:
        logger.exception(f"Error in delete_document: {str(e)}")
        
        # Send notification of deletion failure via WebSocket if user_id provided
        if user_id:
            try:
                await send_pdf_delete_failed(user_id, document_id, str(e))
            except Exception as ws_error:
                logger.error(f"Error sending WebSocket notification: {ws_error}")
        
        return PDFResponse(
            success=False,
            error=str(e)
        )