Spaces:
Runtime error
Runtime error
File size: 4,283 Bytes
9ae3d29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
from typing import Any, List, Callable
import cv2
import insightface
import threading
import DeepFakeAI.globals
import DeepFakeAI.processors.frame.core as frame_processors
from DeepFakeAI import wording
from DeepFakeAI.core import update_status
from DeepFakeAI.face_analyser import get_one_face, get_many_faces, find_similar_faces
from DeepFakeAI.face_reference import get_face_reference, set_face_reference
from DeepFakeAI.typing import Face, Frame
from DeepFakeAI.utilities import conditional_download, resolve_relative_path, is_image, is_video
FRAME_PROCESSOR = None
THREAD_LOCK = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
if FRAME_PROCESSOR is None:
model_path = resolve_relative_path('../.assets/models/inswapper_128.onnx')
FRAME_PROCESSOR = insightface.model_zoo.get_model(model_path, providers = DeepFakeAI.globals.execution_providers)
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128.onnx'])
return True
def pre_process() -> bool:
if not is_image(DeepFakeAI.globals.source_path):
update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
return False
elif not get_one_face(cv2.imread(DeepFakeAI.globals.source_path)):
update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
return False
if not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path):
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
clear_frame_processor()
def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
return get_frame_processor().get(temp_frame, target_face, source_face, paste_back = True)
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
if 'reference' in DeepFakeAI.globals.face_recognition:
similar_faces = find_similar_faces(temp_frame, reference_face, DeepFakeAI.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
temp_frame = swap_face(source_face, similar_face, temp_frame)
if 'many' in DeepFakeAI.globals.face_recognition:
many_faces = get_many_faces(temp_frame)
if many_faces:
for target_face in many_faces:
temp_frame = swap_face(source_face, target_face, temp_frame)
return temp_frame
def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
source_face = get_one_face(cv2.imread(source_path))
reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
result_frame = process_frame(source_face, reference_face, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
if update:
update()
def process_image(source_path : str, target_path : str, output_path : str) -> None:
source_face = get_one_face(cv2.imread(source_path))
target_frame = cv2.imread(target_path)
reference_face = get_one_face(target_frame, DeepFakeAI.globals.reference_face_position) if 'reference' in DeepFakeAI.globals.face_recognition else None
result_frame = process_frame(source_face, reference_face, target_frame)
cv2.imwrite(output_path, result_frame)
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
conditional_set_face_reference(temp_frame_paths)
frame_processors.process_video(source_path, temp_frame_paths, process_frames)
def conditional_set_face_reference(temp_frame_paths : List[str]) -> None:
if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference():
reference_frame = cv2.imread(temp_frame_paths[DeepFakeAI.globals.reference_frame_number])
reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position)
set_face_reference(reference_face)
|