File size: 3,730 Bytes
4a1df2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
PyTorch Model Wrapper
--------------------------
"""


import torch
from torch.nn import CrossEntropyLoss

import textattack

from .model_wrapper import ModelWrapper

torch.cuda.empty_cache()


class PyTorchModelWrapper(ModelWrapper):
    """Loads a PyTorch model (`nn.Module`) and tokenizer.

    Args:
        model (torch.nn.Module): PyTorch model
        tokenizer: tokenizer whose output can be packed as a tensor and passed to the model.
            No type requirement, but most have `tokenizer` method that accepts list of strings.
    """

    def __init__(self, model, tokenizer):
        if not isinstance(model, torch.nn.Module):
            raise TypeError(
                f"PyTorch model must be torch.nn.Module, got type {type(model)}"
            )

        self.model = model
        self.tokenizer = tokenizer

    def to(self, device):
        self.model.to(device)

    def __call__(self, text_input_list, batch_size=32):
        model_device = next(self.model.parameters()).device
        ids = self.tokenizer(text_input_list)
        ids = torch.tensor(ids).to(model_device)

        with torch.no_grad():
            outputs = textattack.shared.utils.batch_model_predict(
                self.model, ids, batch_size=batch_size
            )

        return outputs

    def get_grad(self, text_input, loss_fn=CrossEntropyLoss()):
        """Get gradient of loss with respect to input tokens.

        Args:
            text_input (str): input string
            loss_fn (torch.nn.Module): loss function. Default is `torch.nn.CrossEntropyLoss`
        Returns:
            Dict of ids, tokens, and gradient as numpy array.
        """

        if not hasattr(self.model, "get_input_embeddings"):
            raise AttributeError(
                f"{type(self.model)} must have method `get_input_embeddings` that returns `torch.nn.Embedding` object that represents input embedding layer"
            )
        if not isinstance(loss_fn, torch.nn.Module):
            raise ValueError("Loss function must be of type `torch.nn.Module`.")

        self.model.train()

        embedding_layer = self.model.get_input_embeddings()
        original_state = embedding_layer.weight.requires_grad
        embedding_layer.weight.requires_grad = True

        emb_grads = []

        def grad_hook(module, grad_in, grad_out):
            emb_grads.append(grad_out[0])

        emb_hook = embedding_layer.register_backward_hook(grad_hook)

        self.model.zero_grad()
        model_device = next(self.model.parameters()).device
        ids = self.tokenizer([text_input])
        ids = torch.tensor(ids).to(model_device)

        predictions = self.model(ids)

        output = predictions.argmax(dim=1)
        loss = loss_fn(predictions, output)
        loss.backward()

        # grad w.r.t to word embeddings

        # Fix for Issue #601

        # Check if gradient has shape [max_sequence,1,_] ( when model input in transpose of input sequence)

        if emb_grads[0].shape[1] == 1:
            grad = torch.transpose(emb_grads[0], 0, 1)[0].cpu().numpy()
        else:
            # gradient has shape [1,max_sequence,_]
            grad = emb_grads[0][0].cpu().numpy()

        embedding_layer.weight.requires_grad = original_state
        emb_hook.remove()
        self.model.eval()

        output = {"ids": ids[0].tolist(), "gradient": grad}

        return output

    def _tokenize(self, inputs):
        """Helper method that for `tokenize`
        Args:
            inputs (list[str]): list of input strings
        Returns:
            tokens (list[list[str]]): List of list of tokens as strings
        """
        return [self.tokenizer.convert_ids_to_tokens(self.tokenizer(x)) for x in inputs]