File size: 7,385 Bytes
4a1df2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import copy

from anonymous_demo.functional.config.config_manager import ConfigManager
from anonymous_demo.core.tad.classic.__bert__.models import TADBERT

_tad_config_template = {
    "model": TADBERT,
    "optimizer": "adamw",
    "learning_rate": 0.00002,
    "patience": 99999,
    "pretrained_bert": "microsoft/mdeberta-v3-base",
    "cache_dataset": True,
    "warmup_step": -1,
    "show_metric": False,
    "max_seq_len": 80,
    "dropout": 0,
    "l2reg": 0.000001,
    "num_epoch": 10,
    "batch_size": 16,
    "initializer": "xavier_uniform_",
    "seed": 52,
    "polarities_dim": 3,
    "log_step": 10,
    "evaluate_begin": 0,
    "cross_validate_fold": -1,
    "use_amp": False,
    # split train and test datasets into 5 folds and repeat 3 training
}

_tad_config_base = {
    "model": TADBERT,
    "optimizer": "adamw",
    "learning_rate": 0.00002,
    "pretrained_bert": "microsoft/deberta-v3-base",
    "cache_dataset": True,
    "warmup_step": -1,
    "show_metric": False,
    "max_seq_len": 80,
    "patience": 99999,
    "dropout": 0,
    "l2reg": 0.000001,
    "num_epoch": 10,
    "batch_size": 16,
    "initializer": "xavier_uniform_",
    "seed": 52,
    "polarities_dim": 3,
    "log_step": 10,
    "evaluate_begin": 0,
    "cross_validate_fold": -1
    # split train and test datasets into 5 folds and repeat 3 training
}

_tad_config_english = {
    "model": TADBERT,
    "optimizer": "adamw",
    "learning_rate": 0.00002,
    "patience": 99999,
    "pretrained_bert": "microsoft/deberta-v3-base",
    "cache_dataset": True,
    "warmup_step": -1,
    "show_metric": False,
    "max_seq_len": 80,
    "dropout": 0,
    "l2reg": 0.000001,
    "num_epoch": 10,
    "batch_size": 16,
    "initializer": "xavier_uniform_",
    "seed": 52,
    "polarities_dim": 3,
    "log_step": 10,
    "evaluate_begin": 0,
    "cross_validate_fold": -1
    # split train and test datasets into 5 folds and repeat 3 training
}

_tad_config_multilingual = {
    "model": TADBERT,
    "optimizer": "adamw",
    "learning_rate": 0.00002,
    "patience": 99999,
    "pretrained_bert": "microsoft/mdeberta-v3-base",
    "cache_dataset": True,
    "warmup_step": -1,
    "show_metric": False,
    "max_seq_len": 80,
    "dropout": 0,
    "l2reg": 0.000001,
    "num_epoch": 10,
    "batch_size": 16,
    "initializer": "xavier_uniform_",
    "seed": 52,
    "polarities_dim": 3,
    "log_step": 10,
    "evaluate_begin": 0,
    "cross_validate_fold": -1
    # split train and test datasets into 5 folds and repeat 3 training
}

_tad_config_chinese = {
    "model": TADBERT,
    "optimizer": "adamw",
    "learning_rate": 0.00002,
    "patience": 99999,
    "cache_dataset": True,
    "warmup_step": -1,
    "show_metric": False,
    "pretrained_bert": "bert-base-chinese",
    "max_seq_len": 80,
    "dropout": 0,
    "l2reg": 0.000001,
    "num_epoch": 10,
    "batch_size": 16,
    "initializer": "xavier_uniform_",
    "seed": 52,
    "polarities_dim": 3,
    "log_step": 10,
    "evaluate_begin": 0,
    "cross_validate_fold": -1
    # split train and test datasets into 5 folds and repeat 3 training
}


class TADConfigManager(ConfigManager):
    def __init__(self, args, **kwargs):
        """
        Available Params:  {'model': BERT,
                            'optimizer': "adamw",
                            'learning_rate': 0.00002,
                            'pretrained_bert': "roberta-base",
                            'cache_dataset': True,
                            'warmup_step': -1,
                            'show_metric': False,
                            'max_seq_len': 80,
                            'patience': 99999,
                            'dropout': 0,
                            'l2reg': 0.000001,
                            'num_epoch': 10,
                            'batch_size': 16,
                            'initializer': 'xavier_uniform_',
                            'seed': {52, 25}
                            'embed_dim': 768,
                            'hidden_dim': 768,
                            'polarities_dim': 3,
                            'log_step': 10,
                            'evaluate_begin': 0,
                            'cross_validate_fold': -1 # split train and test datasets into 5 folds and repeat 3 training
                            }
        :param args:
        :param kwargs:
        """
        super().__init__(args, **kwargs)

    @staticmethod
    def set_tad_config(configType: str, newitem: dict):
        if isinstance(newitem, dict):
            if configType == "template":
                _tad_config_template.update(newitem)
            elif configType == "base":
                _tad_config_base.update(newitem)
            elif configType == "english":
                _tad_config_english.update(newitem)
            elif configType == "chinese":
                _tad_config_chinese.update(newitem)
            elif configType == "multilingual":
                _tad_config_multilingual.update(newitem)
            elif configType == "glove":
                _tad_config_glove.update(newitem)
            else:
                raise ValueError(
                    "Wrong value of config type supplied, please use one from following type: template, base, english, chinese, multilingual, glove"
                )
        else:
            raise TypeError(
                "Wrong type of new config item supplied, please use dict e.g.{'NewConfig': NewValue}"
            )

    @staticmethod
    def set_tad_config_template(newitem):
        TADConfigManager.set_tad_config("template", newitem)

    @staticmethod
    def set_tad_config_base(newitem):
        TADConfigManager.set_tad_config("base", newitem)

    @staticmethod
    def set_tad_config_english(newitem):
        TADConfigManager.set_tad_config("english", newitem)

    @staticmethod
    def set_tad_config_chinese(newitem):
        TADConfigManager.set_tad_config("chinese", newitem)

    @staticmethod
    def set_tad_config_multilingual(newitem):
        TADConfigManager.set_tad_config("multilingual", newitem)

    @staticmethod
    def set_tad_config_glove(newitem):
        TADConfigManager.set_tad_config("glove", newitem)

    @staticmethod
    def get_tad_config_template() -> ConfigManager:
        _tad_config_template.update(_tad_config_template)
        return TADConfigManager(copy.deepcopy(_tad_config_template))

    @staticmethod
    def get_tad_config_base() -> ConfigManager:
        _tad_config_template.update(_tad_config_base)
        return TADConfigManager(copy.deepcopy(_tad_config_template))

    @staticmethod
    def get_tad_config_english() -> ConfigManager:
        _tad_config_template.update(_tad_config_english)
        return TADConfigManager(copy.deepcopy(_tad_config_template))

    @staticmethod
    def get_tad_config_chinese() -> ConfigManager:
        _tad_config_template.update(_tad_config_chinese)
        return TADConfigManager(copy.deepcopy(_tad_config_template))

    @staticmethod
    def get_tad_config_multilingual() -> ConfigManager:
        _tad_config_template.update(_tad_config_multilingual)
        return TADConfigManager(copy.deepcopy(_tad_config_template))

    @staticmethod
    def get_tad_config_glove() -> ConfigManager:
        _tad_config_template.update(_tad_config_glove)
        return TADConfigManager(copy.deepcopy(_tad_config_template))