Spaces:
Sleeping
Sleeping
File size: 24,287 Bytes
4a1df2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
"""
Attacker Class
==============
"""
import collections
import logging
import multiprocessing as mp
import os
import queue
import random
import traceback
import torch
import tqdm
import textattack
from textattack.attack_results import (
FailedAttackResult,
MaximizedAttackResult,
SkippedAttackResult,
SuccessfulAttackResult,
)
from textattack.shared.utils import logger
from .attack import Attack
from .attack_args import AttackArgs
class Attacker:
"""Class for running attacks on a dataset with specified parameters. This
class uses the :class:`~textattack.Attack` to actually run the attacks,
while also providing useful features such as parallel processing,
saving/resuming from a checkpint, logging to files and stdout.
Args:
attack (:class:`~textattack.Attack`):
:class:`~textattack.Attack` used to actually carry out the attack.
dataset (:class:`~textattack.datasets.Dataset`):
Dataset to attack.
attack_args (:class:`~textattack.AttackArgs`):
Arguments for attacking the dataset. For default settings, look at the `AttackArgs` class.
Example::
>>> import textattack
>>> import transformers
>>> model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")
>>> tokenizer = transformers.AutoTokenizer.from_pretrained("textattack/bert-base-uncased-imdb")
>>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
>>> attack = textattack.attack_recipes.TextFoolerJin2019.build(model_wrapper)
>>> dataset = textattack.datasets.HuggingFaceDataset("imdb", split="test")
>>> # Attack 20 samples with CSV logging and checkpoint saved every 5 interval
>>> attack_args = textattack.AttackArgs(
... num_examples=20,
... log_to_csv="log.csv",
... checkpoint_interval=5,
... checkpoint_dir="checkpoints",
... disable_stdout=True
... )
>>> attacker = textattack.Attacker(attack, dataset, attack_args)
>>> attacker.attack_dataset()
"""
def __init__(self, attack, dataset, attack_args=None):
assert isinstance(
attack, Attack
), f"`attack` argument must be of type `textattack.Attack`, but got type of `{type(attack)}`."
assert isinstance(
dataset, textattack.datasets.Dataset
), f"`dataset` must be of type `textattack.datasets.Dataset`, but got type `{type(dataset)}`."
if attack_args:
assert isinstance(
attack_args, AttackArgs
), f"`attack_args` must be of type `textattack.AttackArgs`, but got type `{type(attack_args)}`."
else:
attack_args = AttackArgs()
self.attack = attack
self.dataset = dataset
self.attack_args = attack_args
self.attack_log_manager = None
# This is to be set if loading from a checkpoint
self._checkpoint = None
def _get_worklist(self, start, end, num_examples, shuffle):
if end - start < num_examples:
logger.warn(
f"Attempting to attack {num_examples} samples when only {end-start} are available."
)
candidates = list(range(start, end))
if shuffle:
random.shuffle(candidates)
worklist = collections.deque(candidates[:num_examples])
candidates = collections.deque(candidates[num_examples:])
assert (len(worklist) + len(candidates)) == (end - start)
return worklist, candidates
def simple_attack(self, text, label):
"""Internal method that carries out attack.
No parallel processing is involved.
"""
if torch.cuda.is_available():
self.attack.cuda_()
example, ground_truth_output = text, label
try:
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
try:
result = self.attack.attack(example, ground_truth_output)
except Exception as e:
raise e
# return
if (
isinstance(result, SkippedAttackResult) and self.attack_args.attack_n
) or (
not isinstance(result, SuccessfulAttackResult)
and self.attack_args.num_successful_examples
):
return
else:
return result
except KeyboardInterrupt as e:
raise e
def _attack(self):
"""Internal method that carries out attack.
No parallel processing is involved.
"""
if torch.cuda.is_available():
self.attack.cuda_()
if self._checkpoint:
num_remaining_attacks = self._checkpoint.num_remaining_attacks
worklist = self._checkpoint.worklist
worklist_candidates = self._checkpoint.worklist_candidates
logger.info(
f"Recovered from checkpoint previously saved at {self._checkpoint.datetime}."
)
else:
if self.attack_args.num_successful_examples:
num_remaining_attacks = self.attack_args.num_successful_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_successful_examples,
self.attack_args.shuffle,
)
else:
num_remaining_attacks = self.attack_args.num_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_examples,
self.attack_args.shuffle,
)
if not self.attack_args.silent:
print(self.attack, "\n")
pbar = tqdm.tqdm(total=num_remaining_attacks, smoothing=0, dynamic_ncols=True)
if self._checkpoint:
num_results = self._checkpoint.results_count
num_failures = self._checkpoint.num_failed_attacks
num_skipped = self._checkpoint.num_skipped_attacks
num_successes = self._checkpoint.num_successful_attacks
else:
num_results = 0
num_failures = 0
num_skipped = 0
num_successes = 0
sample_exhaustion_warned = False
while worklist:
idx = worklist.popleft()
try:
example, ground_truth_output = self.dataset[idx]
except IndexError:
continue
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
try:
result = self.attack.attack(example, ground_truth_output)
except Exception as e:
raise e
if (
isinstance(result, SkippedAttackResult) and self.attack_args.attack_n
) or (
not isinstance(result, SuccessfulAttackResult)
and self.attack_args.num_successful_examples
):
if worklist_candidates:
next_sample = worklist_candidates.popleft()
worklist.append(next_sample)
else:
if not sample_exhaustion_warned:
logger.warn("Ran out of samples to attack!")
sample_exhaustion_warned = True
else:
pbar.update(1)
self.attack_log_manager.log_result(result)
if not self.attack_args.disable_stdout and not self.attack_args.silent:
print("\n")
num_results += 1
if isinstance(result, SkippedAttackResult):
num_skipped += 1
if isinstance(result, (SuccessfulAttackResult, MaximizedAttackResult)):
num_successes += 1
if isinstance(result, FailedAttackResult):
num_failures += 1
pbar.set_description(
f"[Succeeded / Failed / Skipped / Total] {num_successes} / {num_failures} / {num_skipped} / {num_results}"
)
if (
self.attack_args.checkpoint_interval
and len(self.attack_log_manager.results)
% self.attack_args.checkpoint_interval
== 0
):
new_checkpoint = textattack.shared.AttackCheckpoint(
self.attack_args,
self.attack_log_manager,
worklist,
worklist_candidates,
)
new_checkpoint.save()
self.attack_log_manager.flush()
pbar.close()
print()
# Enable summary stdout
if not self.attack_args.silent and self.attack_args.disable_stdout:
self.attack_log_manager.enable_stdout()
if self.attack_args.enable_advance_metrics:
self.attack_log_manager.enable_advance_metrics = True
self.attack_log_manager.log_summary()
self.attack_log_manager.flush()
print()
def _attack_parallel(self):
pytorch_multiprocessing_workaround()
if self._checkpoint:
num_remaining_attacks = self._checkpoint.num_remaining_attacks
worklist = self._checkpoint.worklist
worklist_candidates = self._checkpoint.worklist_candidates
logger.info(
f"Recovered from checkpoint previously saved at {self._checkpoint.datetime}."
)
else:
if self.attack_args.num_successful_examples:
num_remaining_attacks = self.attack_args.num_successful_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_successful_examples,
self.attack_args.shuffle,
)
else:
num_remaining_attacks = self.attack_args.num_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_examples,
self.attack_args.shuffle,
)
in_queue = torch.multiprocessing.Queue()
out_queue = torch.multiprocessing.Queue()
for i in worklist:
try:
example, ground_truth_output = self.dataset[i]
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
in_queue.put((i, example, ground_truth_output))
except IndexError:
raise IndexError(
f"Tried to access element at {i} in dataset of size {len(self.dataset)}."
)
# We reserve the first GPU for coordinating workers.
num_gpus = torch.cuda.device_count()
num_workers = self.attack_args.num_workers_per_device * num_gpus
logger.info(f"Running {num_workers} worker(s) on {num_gpus} GPU(s).")
# Lock for synchronization
lock = mp.Lock()
# We move Attacker (and its components) to CPU b/c we don't want models using wrong GPU in worker processes.
self.attack.cpu_()
torch.cuda.empty_cache()
# Start workers.
worker_pool = torch.multiprocessing.Pool(
num_workers,
attack_from_queue,
(
self.attack,
self.attack_args,
num_gpus,
mp.Value("i", 1, lock=False),
lock,
in_queue,
out_queue,
),
)
# Log results asynchronously and update progress bar.
if self._checkpoint:
num_results = self._checkpoint.results_count
num_failures = self._checkpoint.num_failed_attacks
num_skipped = self._checkpoint.num_skipped_attacks
num_successes = self._checkpoint.num_successful_attacks
else:
num_results = 0
num_failures = 0
num_skipped = 0
num_successes = 0
logger.info(f"Worklist size: {len(worklist)}")
logger.info(f"Worklist candidate size: {len(worklist_candidates)}")
sample_exhaustion_warned = False
pbar = tqdm.tqdm(total=num_remaining_attacks, smoothing=0, dynamic_ncols=True)
while worklist:
idx, result = out_queue.get(block=True)
worklist.remove(idx)
if isinstance(result, tuple) and isinstance(result[0], Exception):
logger.error(
f'Exception encountered for input "{self.dataset[idx][0]}".'
)
error_trace = result[1]
logger.error(error_trace)
in_queue.close()
in_queue.join_thread()
out_queue.close()
out_queue.join_thread()
worker_pool.terminate()
worker_pool.join()
return
elif (
isinstance(result, SkippedAttackResult) and self.attack_args.attack_n
) or (
not isinstance(result, SuccessfulAttackResult)
and self.attack_args.num_successful_examples
):
if worklist_candidates:
next_sample = worklist_candidates.popleft()
example, ground_truth_output = self.dataset[next_sample]
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
worklist.append(next_sample)
in_queue.put((next_sample, example, ground_truth_output))
else:
if not sample_exhaustion_warned:
logger.warn("Ran out of samples to attack!")
sample_exhaustion_warned = True
else:
pbar.update()
self.attack_log_manager.log_result(result)
num_results += 1
if isinstance(result, SkippedAttackResult):
num_skipped += 1
if isinstance(result, (SuccessfulAttackResult, MaximizedAttackResult)):
num_successes += 1
if isinstance(result, FailedAttackResult):
num_failures += 1
pbar.set_description(
f"[Succeeded / Failed / Skipped / Total] {num_successes} / {num_failures} / {num_skipped} / {num_results}"
)
if (
self.attack_args.checkpoint_interval
and len(self.attack_log_manager.results)
% self.attack_args.checkpoint_interval
== 0
):
new_checkpoint = textattack.shared.AttackCheckpoint(
self.attack_args,
self.attack_log_manager,
worklist,
worklist_candidates,
)
new_checkpoint.save()
self.attack_log_manager.flush()
# Send sentinel values to worker processes
for _ in range(num_workers):
in_queue.put(("END", "END", "END"))
worker_pool.close()
worker_pool.join()
pbar.close()
print()
# Enable summary stdout.
if not self.attack_args.silent and self.attack_args.disable_stdout:
self.attack_log_manager.enable_stdout()
if self.attack_args.enable_advance_metrics:
self.attack_log_manager.enable_advance_metrics = True
self.attack_log_manager.log_summary()
self.attack_log_manager.flush()
print()
def attack_dataset(self):
"""Attack the dataset.
Returns:
:obj:`list[AttackResult]` - List of :class:`~textattack.attack_results.AttackResult` obtained after attacking the given dataset..
"""
if self.attack_args.silent:
logger.setLevel(logging.ERROR)
if self.attack_args.query_budget:
self.attack.goal_function.query_budget = self.attack_args.query_budget
if not self.attack_log_manager:
self.attack_log_manager = AttackArgs.create_loggers_from_args(
self.attack_args
)
textattack.shared.utils.set_seed(self.attack_args.random_seed)
if self.dataset.shuffled and self.attack_args.checkpoint_interval:
# Not allowed b/c we cannot recover order of shuffled data
raise ValueError(
"Cannot use `--checkpoint-interval` with dataset that has been internally shuffled."
)
self.attack_args.num_examples = (
len(self.dataset)
if self.attack_args.num_examples == -1
else self.attack_args.num_examples
)
if self.attack_args.parallel:
if torch.cuda.device_count() == 0:
raise Exception(
"Found no GPU on your system. To run attacks in parallel, GPU is required."
)
self._attack_parallel()
else:
self._attack()
if self.attack_args.silent:
logger.setLevel(logging.INFO)
return self.attack_log_manager.results
def update_attack_args(self, **kwargs):
"""To update any attack args, pass the new argument as keyword argument
to this function.
Examples::
>>> attacker = #some instance of Attacker
>>> # To switch to parallel mode and increase checkpoint interval from 100 to 500
>>> attacker.update_attack_args(parallel=True, checkpoint_interval=500)
"""
for k in kwargs:
if hasattr(self.attack_args, k):
self.attack_args.k = kwargs[k]
else:
raise ValueError(f"`textattack.AttackArgs` does not have field {k}.")
@classmethod
def from_checkpoint(cls, attack, dataset, checkpoint):
"""Resume attacking from a saved checkpoint. Attacker and dataset must
be recovered by the user again, while attack args are loaded from the
saved checkpoint.
Args:
attack (:class:`~textattack.Attack`):
Attack object for carrying out the attack.
dataset (:class:`~textattack.datasets.Dataset`):
Dataset to attack.
checkpoint (:obj:`Union[str, :class:`~textattack.shared.AttackChecpoint`]`):
Path of saved checkpoint or the actual saved checkpoint.
"""
assert isinstance(
checkpoint, (str, textattack.shared.AttackCheckpoint)
), f"`checkpoint` must be of type `str` or `textattack.shared.AttackCheckpoint`, but got type `{type(checkpoint)}`."
if isinstance(checkpoint, str):
checkpoint = textattack.shared.AttackCheckpoint.load(checkpoint)
attacker = cls(attack, dataset, checkpoint.attack_args)
attacker.attack_log_manager = checkpoint.attack_log_manager
attacker._checkpoint = checkpoint
return attacker
@staticmethod
def attack_interactive(attack):
print(attack, "\n")
print("Running in interactive mode")
print("----------------------------")
while True:
print('Enter a sentence to attack or "q" to quit:')
text = input()
if text == "q":
break
if not text:
continue
print("Attacking...")
example = textattack.shared.attacked_text.AttackedText(text)
output = attack.goal_function.get_output(example)
result = attack.attack(example, output)
print(result.__str__(color_method="ansi") + "\n")
#
# Helper Methods for multiprocess attacks
#
def pytorch_multiprocessing_workaround():
# This is a fix for a known bug
try:
torch.multiprocessing.set_start_method("spawn", force=True)
torch.multiprocessing.set_sharing_strategy("file_system")
except RuntimeError:
pass
def set_env_variables(gpu_id):
# Disable tensorflow logs, except in the case of an error.
if "TF_CPP_MIN_LOG_LEVEL" not in os.environ:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Set sharing strategy to file_system to avoid file descriptor leaks
torch.multiprocessing.set_sharing_strategy("file_system")
# Only use one GPU, if we have one.
# For Tensorflow
# TODO: Using USE with `--parallel` raises similar issue as https://github.com/tensorflow/tensorflow/issues/38518#
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# For PyTorch
torch.cuda.set_device(gpu_id)
# Fix TensorFlow GPU memory growth
try:
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
gpu = gpus[gpu_id]
tf.config.experimental.set_visible_devices(gpu, "GPU")
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
except ModuleNotFoundError:
pass
def attack_from_queue(
attack, attack_args, num_gpus, first_to_start, lock, in_queue, out_queue
):
assert isinstance(
attack, Attack
), f"`attack` must be of type `Attack`, but got type `{type(attack)}`."
gpu_id = (torch.multiprocessing.current_process()._identity[0] - 1) % num_gpus
set_env_variables(gpu_id)
textattack.shared.utils.set_seed(attack_args.random_seed)
if torch.multiprocessing.current_process()._identity[0] > 1:
logging.disable()
attack.cuda_()
# Simple non-synchronized check to see if it's the first process to reach this point.
# This let us avoid waiting for lock.
if bool(first_to_start.value):
# If it's first process to reach this step, we first try to acquire the lock to update the value.
with lock:
# Because another process could have changed `first_to_start=False` while we wait, we check again.
if bool(first_to_start.value):
first_to_start.value = 0
if not attack_args.silent:
print(attack, "\n")
while True:
try:
i, example, ground_truth_output = in_queue.get(timeout=5)
if i == "END" and example == "END" and ground_truth_output == "END":
# End process when sentinel value is received
break
else:
result = attack.attack(example, ground_truth_output)
out_queue.put((i, result))
except Exception as e:
if isinstance(e, queue.Empty):
continue
else:
out_queue.put((i, (e, traceback.format_exc())))
|