Spaces:
Runtime error
Runtime error
File size: 10,562 Bytes
63775f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import re
import string
import flair
import jieba
import pycld2 as cld2
from .importing import LazyLoader
def has_letter(word):
"""Returns true if `word` contains at least one character in [A-Za-z]."""
return re.search("[A-Za-z]+", word) is not None
def is_one_word(word):
return len(words_from_text(word)) == 1
def add_indent(s_, numSpaces):
s = s_.split("\n")
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
def words_from_text(s, words_to_ignore=[]):
"""Lowercases a string, removes all non-alphanumeric characters, and splits
into words."""
try:
isReliable, textBytesFound, details = cld2.detect(s)
if details[0][0] == "Chinese" or details[0][0] == "ChineseT":
seg_list = jieba.cut(s, cut_all=False)
s = " ".join(seg_list)
else:
s = " ".join(s.split())
except Exception:
s = " ".join(s.split())
homos = """˗৭Ȣ𝟕бƼᏎƷᒿlO`ɑЬϲԁе𝚏ɡհіϳ𝒌ⅼmոорԛⲅѕ𝚝սѵԝ×уᴢ"""
exceptions = """'-_*@"""
filter_pattern = homos + """'\\-_\\*@"""
# TODO: consider whether one should add "." to `exceptions` (and "\." to `filter_pattern`)
# example "My email address is xxx@yyy.com"
filter_pattern = f"[\\w{filter_pattern}]+"
words = []
for word in s.split():
# Allow apostrophes, hyphens, underscores, asterisks and at signs as long as they don't begin the word.
word = word.lstrip(exceptions)
filt = [w.lstrip(exceptions) for w in re.findall(filter_pattern, word)]
words.extend(filt)
words = list(filter(lambda w: w not in words_to_ignore + [""], words))
return words
class TextAttackFlairTokenizer(flair.data.Tokenizer):
def tokenize(self, text: str):
return words_from_text(text)
def default_class_repr(self):
if hasattr(self, "extra_repr_keys"):
extra_params = []
for key in self.extra_repr_keys():
extra_params.append(" (" + key + ")" + ": {" + key + "}")
if len(extra_params):
extra_str = "\n" + "\n".join(extra_params) + "\n"
extra_str = f"({extra_str})"
else:
extra_str = ""
extra_str = extra_str.format(**self.__dict__)
else:
extra_str = ""
return f"{self.__class__.__name__}{extra_str}"
class ReprMixin(object):
"""Mixin for enhanced __repr__ and __str__."""
def __repr__(self):
return default_class_repr(self)
__str__ = __repr__
def extra_repr_keys(self):
"""extra fields to be included in the representation of a class."""
return []
LABEL_COLORS = [
"red",
"green",
"blue",
"purple",
"yellow",
"orange",
"pink",
"cyan",
"gray",
"brown",
]
def process_label_name(label_name):
"""Takes a label name from a dataset and makes it nice.
Meant to correct different abbreviations and automatically
capitalize.
"""
label_name = label_name.lower()
if label_name == "neg":
label_name = "negative"
elif label_name == "pos":
label_name = "positive"
return label_name.capitalize()
def color_from_label(label_num):
"""Arbitrary colors for different labels."""
try:
label_num %= len(LABEL_COLORS)
return LABEL_COLORS[label_num]
except TypeError:
return "blue"
def color_from_output(label_name, label):
"""Returns the correct color for a label name, like 'positive', 'medicine',
or 'entailment'."""
label_name = label_name.lower()
if label_name in {"entailment", "positive"}:
return "green"
elif label_name in {"contradiction", "negative"}:
return "red"
elif label_name in {"neutral"}:
return "gray"
else:
# if no color pre-stored for label name, return color corresponding to
# the label number (so, even for unknown datasets, we can give each
# class a distinct color)
return color_from_label(label)
class ANSI_ESCAPE_CODES:
"""Escape codes for printing color to the terminal."""
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
GRAY = "\033[37m"
PURPLE = "\033[35m"
YELLOW = "\033[93m"
ORANGE = "\033[38:5:208m"
PINK = "\033[95m"
CYAN = "\033[96m"
GRAY = "\033[38:5:240m"
BROWN = "\033[38:5:52m"
WARNING = "\033[93m"
FAIL = "\033[91m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
""" This color stops the current color sequence. """
STOP = "\033[0m"
def color_text(text, color=None, method=None):
if not (isinstance(color, str) or isinstance(color, tuple)):
raise TypeError(f"Cannot color text with provided color of type {type(color)}")
if isinstance(color, tuple):
if len(color) > 1:
text = color_text(text, color[1:], method)
color = color[0]
if method is None:
return text
if method == "html":
return f"<font color = {color}>{text}</font>"
elif method == "ansi":
if color == "green":
color = ANSI_ESCAPE_CODES.OKGREEN
elif color == "red":
color = ANSI_ESCAPE_CODES.FAIL
elif color == "blue":
color = ANSI_ESCAPE_CODES.OKBLUE
elif color == "purple":
color = ANSI_ESCAPE_CODES.PURPLE
elif color == "yellow":
color = ANSI_ESCAPE_CODES.YELLOW
elif color == "orange":
color = ANSI_ESCAPE_CODES.ORANGE
elif color == "pink":
color = ANSI_ESCAPE_CODES.PINK
elif color == "cyan":
color = ANSI_ESCAPE_CODES.CYAN
elif color == "gray":
color = ANSI_ESCAPE_CODES.GRAY
elif color == "brown":
color = ANSI_ESCAPE_CODES.BROWN
elif color == "bold":
color = ANSI_ESCAPE_CODES.BOLD
elif color == "underline":
color = ANSI_ESCAPE_CODES.UNDERLINE
elif color == "warning":
color = ANSI_ESCAPE_CODES.WARNING
else:
raise ValueError(f"unknown text color {color}")
return color + text + ANSI_ESCAPE_CODES.STOP
elif method == "file":
return "[[" + text + "]]"
_flair_pos_tagger = None
def flair_tag(sentence, tag_type="upos-fast"):
"""Tags a `Sentence` object using `flair` part-of-speech tagger."""
global _flair_pos_tagger
if not _flair_pos_tagger:
from flair.models import SequenceTagger
_flair_pos_tagger = SequenceTagger.load(tag_type)
_flair_pos_tagger.predict(sentence, force_token_predictions=True)
def zip_flair_result(pred, tag_type="upos-fast"):
"""Takes a sentence tagging from `flair` and returns two lists, of words
and their corresponding parts-of-speech."""
from flair.data import Sentence
if not isinstance(pred, Sentence):
raise TypeError("Result from Flair POS tagger must be a `Sentence` object.")
tokens = pred.tokens
word_list = []
pos_list = []
for token in tokens:
word_list.append(token.text)
if "pos" in tag_type:
pos_list.append(token.annotation_layers["pos"][0]._value)
elif tag_type == "ner":
pos_list.append(token.get_label("ner"))
return word_list, pos_list
stanza = LazyLoader("stanza", globals(), "stanza")
def zip_stanza_result(pred, tagset="universal"):
"""Takes the first sentence from a document from `stanza` and returns two
lists, one of words and the other of their corresponding parts-of-
speech."""
if not isinstance(pred, stanza.models.common.doc.Document):
raise TypeError("Result from Stanza POS tagger must be a `Document` object.")
word_list = []
pos_list = []
for sentence in pred.sentences:
for word in sentence.words:
word_list.append(word.text)
if tagset == "universal":
pos_list.append(word.upos)
else:
pos_list.append(word.xpos)
return word_list, pos_list
def check_if_subword(token, model_type, starting=False):
"""Check if ``token`` is a subword token that is not a standalone word.
Args:
token (str): token to check.
model_type (str): type of model (options: "bert", "roberta", "xlnet").
starting (bool): Should be set ``True`` if this token is the starting token of the overall text.
This matters because models like RoBERTa does not add "Ġ" to beginning token.
Returns:
(bool): ``True`` if ``token`` is a subword token.
"""
avail_models = [
"bert",
"gpt",
"gpt2",
"roberta",
"bart",
"electra",
"longformer",
"xlnet",
]
if model_type not in avail_models:
raise ValueError(
f"Model type {model_type} is not available. Options are {avail_models}."
)
if model_type in ["bert", "electra"]:
return True if "##" in token else False
elif model_type in ["gpt", "gpt2", "roberta", "bart", "longformer"]:
if starting:
return False
else:
return False if token[0] == "Ġ" else True
elif model_type == "xlnet":
return False if token[0] == "_" else True
else:
return False
def strip_BPE_artifacts(token, model_type):
"""Strip characters such as "Ġ" that are left over from BPE tokenization.
Args:
token (str)
model_type (str): type of model (options: "bert", "roberta", "xlnet")
"""
avail_models = [
"bert",
"gpt",
"gpt2",
"roberta",
"bart",
"electra",
"longformer",
"xlnet",
]
if model_type not in avail_models:
raise ValueError(
f"Model type {model_type} is not available. Options are {avail_models}."
)
if model_type in ["bert", "electra"]:
return token.replace("##", "")
elif model_type in ["gpt", "gpt2", "roberta", "bart", "longformer"]:
return token.replace("Ġ", "")
elif model_type == "xlnet":
if len(token) > 1 and token[0] == "_":
return token[1:]
else:
return token
else:
return token
def check_if_punctuations(word):
"""Returns ``True`` if ``word`` is just a sequence of punctuations."""
for c in word:
if c not in string.punctuation:
return False
return True
|