File size: 11,064 Bytes
b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 e7df474 b7b1f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
"""
RICA Agent - Complete Fixed Version
"""
import streamlit as st
import os
import sys
from pathlib import Path
import json
# Add project root to path for imports
if str(Path(__file__).parent) not in sys.path:
sys.path.append(str(Path(__file__).parent))
# Import modules
try:
from utils.model_trainer import EmbeddedChurnTrainer
from agent.rica_agent import execute_rica_analysis_hf
except ImportError as e:
st.error(f"Import error: {e}")
st.stop()
# Initialize session state
if 'api_key_valid' not in st.session_state:
st.session_state.api_key_valid = False
if 'model_trained' not in st.session_state:
st.session_state.model_trained = False
if 'trainer' not in st.session_state:
st.session_state.trainer = EmbeddedChurnTrainer()
if 'analysis_type' not in st.session_state:
st.session_state.analysis_type = 'comprehensive'
if 'risk_threshold' not in st.session_state:
st.session_state.risk_threshold = 0.6
if 'max_customers' not in st.session_state:
st.session_state.max_customers = 200
# Page configuration
st.set_page_config(
page_title="RICA - AI Revenue Intelligence",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: bold;
text-align: center;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1rem;
}
.stAlert > div {
padding: 0.5rem;
}
.metric-container {
background: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown('<h1 class="main-header">π€ RICA - AI Revenue Intelligence Agent</h1>', unsafe_allow_html=True)
st.markdown("### Enterprise Business Intelligence Powered by Machine Learning")
# Sidebar configuration
with st.sidebar:
st.header("π§ Configuration")
# API Key input with proper validation
openai_key = st.text_input(
"OpenAI API Key",
type="password",
help="Required for AI agent operations",
key="openai_api_key",
placeholder="sk-..."
)
# Validate and store API key
if openai_key and openai_key.startswith('sk-') and len(openai_key) > 20:
os.environ["OPENAI_API_KEY"] = openai_key
st.session_state.api_key_valid = True
st.success("β
OpenAI API Key Configured")
st.caption("Key validated and ready for use")
elif openai_key:
st.session_state.api_key_valid = False
st.error("β Invalid API Key Format")
st.caption("Key should start with 'sk-' and be longer than 20 characters")
else:
st.session_state.api_key_valid = False
st.warning("β οΈ Enter API Key to enable AI features")
st.divider()
# Model status
st.header("π§ ML Model Status")
trainer = st.session_state.trainer
model_exists = trainer.model_exists()
if model_exists:
st.success("β
Model Ready")
try:
metadata = trainer.load_existing_metadata()
if metadata and 'metrics' in metadata:
st.metric("Model Accuracy", f"{metadata['metrics'].get('test_accuracy', 0):.1%}")
st.metric("Training Date", metadata.get('training_date', 'Unknown')[:10])
st.session_state.model_trained = True
except:
st.info("Model exists but metadata unavailable")
st.session_state.model_trained = True
else:
st.warning("β οΈ Model Not Trained")
st.session_state.model_trained = False
if st.button("ποΈ Train Model Now", type="primary", key="train_model_btn"):
if not st.session_state.api_key_valid:
st.error("Please configure API key first")
else:
with st.spinner("Training ML model... This may take 1-2 minutes"):
try:
metrics = trainer.train_model_if_needed()
if metrics:
st.success("π Model trained successfully!")
st.session_state.model_trained = True
st.rerun()
else:
st.error("Training failed. Please check the logs.")
except Exception as e:
st.error(f"Training error: {str(e)}")
st.divider()
# Analysis configuration (only if API key is valid)
if st.session_state.api_key_valid:
st.header("π Analysis Options")
analysis_type = st.selectbox(
"Select Analysis Type",
["comprehensive", "churn_focus", "quick_insights"],
format_func=lambda x: {
"comprehensive": "π― Comprehensive Review",
"churn_focus": "π¨ Churn Risk Analysis",
"quick_insights": "β‘ Quick Insights"
}[x],
key="analysis_type_select"
)
st.session_state.analysis_type = analysis_type
# Advanced options
with st.expander("βοΈ Advanced Options"):
risk_threshold = st.slider(
"Churn Risk Threshold",
0.3, 0.9, 0.6,
key="risk_threshold_slider"
)
max_customers = st.number_input(
"Max Customers to Analyze",
50, 500, 200,
key="max_customers_input"
)
st.session_state.risk_threshold = risk_threshold
st.session_state.max_customers = max_customers
# Main content logic
if not st.session_state.api_key_valid:
# Show welcome screen when API key not configured
st.info("π Please enter your OpenAI API Key in the sidebar to begin")
col1, col2 = st.columns(2)
with col1:
st.markdown("""
## π Capabilities
**RICA** combines machine learning with autonomous AI to deliver:
- π― **Churn Prediction**: ML models identify at-risk customers
- π **Real-time Analysis**: Direct SAP data integration
- π€ **Autonomous Insights**: LLM-powered recommendations
- π **Business Impact**: Actionable revenue optimization
""")
with col2:
st.markdown("""
## ποΈ Architecture
- **Data Source**: Real SAP/SALT dataset
- **ML Engine**: Scikit-learn Random Forest
- **Agent Framework**: smolagents + OpenAI
- **Analytics**: DuckDB high-performance processing
- **UI**: Streamlit interactive interface
""")
# Demo metrics
st.markdown("## π Sample Analytics Preview")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Customers", "2,847", delta="12%")
with col2:
st.metric("Churn Risk", "23 customers", delta="-8", delta_color="inverse")
with col3:
st.metric("Revenue at Risk", "$1.2M", delta="15%")
with col4:
st.metric("Model Accuracy", "87.3%", delta="2.1%")
elif not st.session_state.model_trained:
# Model training required
st.warning("π§ Machine learning model needs to be trained before analysis")
st.info("π Use the 'Train Model Now' button in the sidebar (takes 1-2 minutes)")
st.markdown("## π Training Process")
st.markdown("""
1. **Load SAP Data**: Customer and sales data from Hugging Face Hub
2. **Feature Engineering**: RFM analysis and behavioral patterns
3. **Model Training**: Random Forest classifier with cross-validation
4. **Performance Validation**: Accuracy testing and metrics calculation
5. **Model Persistence**: Save for future predictions
""")
else:
# Main analysis interface - API key valid and model trained
st.markdown("## π― AI Business Intelligence Dashboard")
# Analysis execution
if st.button("π Run RICA Analysis", type="primary", use_container_width=True):
with st.spinner("π€ RICA is analyzing your business data..."):
try:
# Execute analysis
parameters = {
"risk_threshold": st.session_state.risk_threshold,
"max_customers": st.session_state.max_customers
}
result = execute_rica_analysis_hf(st.session_state.analysis_type, parameters)
# Display results
st.success("β
Analysis Complete!")
# Create tabs for different result views
if st.session_state.analysis_type == "comprehensive":
tab1, tab2, tab3 = st.tabs(["π Executive Summary", "π¨ Risk Analysis", "π‘ Recommendations"])
with tab1:
st.markdown("### Executive Dashboard")
st.info(str(result))
with tab2:
st.markdown("### Customer Risk Analysis")
st.write("Detailed churn risk breakdown and customer segmentation")
with tab3:
st.markdown("### AI Recommendations")
st.write("Specific actions prioritized by business impact")
else:
st.markdown(f"### {st.session_state.analysis_type.replace('_', ' ').title()} Results")
st.info(str(result))
# Raw response in expander
with st.expander("π Detailed Analysis Response"):
st.code(str(result), language="text")
except Exception as e:
st.error(f"β Analysis failed: {str(e)}")
st.info("Please check your API key and model status")
# Show model performance metrics
if st.session_state.trainer.model_exists():
st.markdown("## π Model Performance")
try:
metadata = st.session_state.trainer.load_existing_metadata()
if metadata and 'metrics' in metadata:
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Model Accuracy", f"{metadata['metrics'].get('test_accuracy', 0):.1%}")
with col2:
st.metric("Training Samples", f"{metadata['metrics'].get('training_samples', 0):,}")
with col3:
st.metric("Churn Rate", f"{metadata['metrics'].get('churn_rate', 0):.1%}")
except:
st.info("Model performance metrics unavailable")
# Footer
st.markdown("---")
st.markdown("π€ **RICA Agent** | ML + AI for Business Intelligence | Deployed on π€ Hugging Face Spaces")
|