File size: 7,753 Bytes
80f4fb3
 
 
 
 
 
 
 
 
 
 
 
 
897ec15
80f4fb3
 
 
897ec15
80f4fb3
897ec15
 
 
 
 
 
 
80f4fb3
897ec15
 
80f4fb3
 
ec113e6
 
 
 
 
80f4fb3
 
ec113e6
 
 
 
 
 
 
 
80f4fb3
 
ec113e6
 
 
 
 
 
 
 
80f4fb3
897ec15
 
80f4fb3
 
f1ec1d5
 
 
80f4fb3
 
f1ec1d5
 
 
af69459
 
 
 
f1ec1d5
 
 
 
 
80f4fb3
 
af69459
897ec15
80f4fb3
897ec15
80f4fb3
 
897ec15
80f4fb3
897ec15
80f4fb3
 
 
1138359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780971d
ba021ee
80f4fb3
897ec15
80f4fb3
897ec15
80f4fb3
897ec15
80f4fb3
 
 
 
 
 
 
 
 
 
 
 
 
b701d33
80f4fb3
 
 
780971d
80f4fb3
 
 
897ec15
80f4fb3
 
 
 
 
 
 
 
 
 
 
f5f9605
80f4fb3
 
f5f9605
80f4fb3
 
 
 
f5f9605
80f4fb3
 
f5f9605
80f4fb3
 
f5f9605
80f4fb3
f5f9605
 
 
80f4fb3
f5f9605
80f4fb3
 
f5f9605
80f4fb3
 
f5f9605
 
80f4fb3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS, Chroma
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers  # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
import os


# PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_pdf_text(pdf_docs):
    temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
    pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
    pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

# 과제
# μ•„λž˜ ν…μŠ€νŠΈ μΆ”μΆœ ν•¨μˆ˜λ₯Ό μž‘μ„±

def get_text_file(docs):
    if docs.type == 'text/plain':
        # ν…μŠ€νŠΈ 파일 (.txt)μ—μ„œ ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜
        return [docs.getvalue().decode('utf-8')]
    else:
        st.warning("Unsupported file type for get_text_file")

def get_csv_file(docs):
    if docs.type == 'text/csv':
        # CSV 파일 (.csv)μ—μ„œ ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜
        csv_loader = CSVLoader(docs)
        csv_data = csv_loader.load()
        # CSV 파일의 각 행을 λ¬Έμžμ—΄λ‘œ λ³€ν™˜ν•˜μ—¬ λ°˜ν™˜
        return [' '.join(map(str, row)) for row in csv_data]
    else:
        st.warning("Unsupported file type for get_csv_file")

def get_json_file(docs):
    if docs.type == 'application/json':
        # JSON 파일 (.json)μ—μ„œ ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜
        json_loader = JSONLoader(docs)
        json_data = json_loader.load()
        # JSON 파일의 각 ν•­λͺ©μ„ λ¬Έμžμ—΄λ‘œ λ³€ν™˜ν•˜μ—¬ λ°˜ν™˜
        return [json.dumps(item) for item in json_data]
    else:
        st.warning("Unsupported file type for get_json_file")

    
# λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_text_chunks(documents):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )

    # 각 λ¬Έμ„œμ˜ λ‚΄μš©μ„ λ¦¬μŠ€νŠΈμ— μΆ”κ°€
    texts = []
    for doc in documents:
        if hasattr(doc, 'page_content'):
            # λ¬Έμ„œ 객체인 κ²½μš°μ—λ§Œ μΆ”κ°€
            texts.append(doc.page_content)
        elif isinstance(doc, str):
            # λ¬Έμžμ—΄μΈ 경우 κ·ΈλŒ€λ‘œ μΆ”κ°€
            texts.append(doc)

    # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜
    return text_splitter.split_documents(texts)



# ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_vectorstore(text_chunks):
    # OpenAI μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€. (Embedding models - Ada v2)

    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

    return vectorstore # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


def get_conversation_chain(vectorstore):
    print(f"DEBUG: session_state.conversation before initialization: {st.session_state.conversation}")

    try:
        if st.session_state.conversation is None:
            gpt_model_name = 'gpt-3.5-turbo'
            llm = ChatOpenAI(model_name=gpt_model_name)

            # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
            memory = ConversationBufferMemory(
                memory_key='chat_history', return_messages=True)
            # λŒ€ν™” 검색 체인을 μƒμ„±ν•©λ‹ˆλ‹€.
            conversation_chain = ConversationalRetrievalChain.from_llm(
                llm=llm,
                retriever=vectorstore.as_retriever(),
                memory=memory
            )
            st.session_state.conversation = conversation_chain

    except Exception as e:
        print(f"Error during conversation initialization: {e}")

    print(f"DEBUG: session_state.conversation after initialization: {st.session_state.conversation}")

    return st.session_state.conversation if st.session_state.conversation else ConversationalRetrievalChain()

# μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def handle_userinput(user_question):
    # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
    response = st.session_state.conversation({'question': user_question})
    # λŒ€ν™” 기둝을 μ €μž₯ν•©λ‹ˆλ‹€.
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple Files :)",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state or st.session_state.conversation is None:
        st.session_state.conversation = None
        st.session_state.chat_history = None

    st.header("Chat with multiple Files :")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
        if openai_key:
            os.environ["OPENAI_API_KEY"] = openai_key

        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your documents here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # λ¬Έμ„œμ—μ„œ μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό 담을 리슀트
                doc_list = []

                for file in docs:
                    if file.type == 'text/plain':
                        # .txt 파일의 경우
                        doc_list.extend(get_text_file(file))
                    elif file.type == 'text/csv':
                        # .csv 파일의 경우
                        doc_list.extend(get_csv_file(file))
                    elif file.type == 'application/json':
                        # .json 파일의 경우
                        doc_list.extend(get_json_file(file))
                    elif file.type in ['application/octet-stream', 'application/pdf']:
                        # .pdf 파일의 경우
                        doc_list.extend(get_pdf_text(file))

                # ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„κΈ°
                text_chunks = get_text_chunks(doc_list)

                # 벑터 μŠ€ν† μ–΄ 생성
                vectorstore = get_vectorstore(text_chunks)

                # λŒ€ν™” 체인 생성
                st.session_state.conversation = get_conversation_chain(vectorstore)


if __name__ == '__main__':
    main()