File size: 25,136 Bytes
f7ac35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# Copyright (c) OpenMMLab. All rights reserved.
import io
import os
import os.path as osp
import pkgutil
import re
import time
import warnings
from collections import OrderedDict
from importlib import import_module
from tempfile import TemporaryDirectory

import torch
import torchvision
from torch.optim import Optimizer
from torch.utils import model_zoo

import annotator.uniformer.mmcv as mmcv
from ..fileio import FileClient
from ..fileio import load as load_file
from ..parallel import is_module_wrapper
from ..utils import mkdir_or_exist
from .dist_utils import get_dist_info

ENV_MMCV_HOME = 'MMCV_HOME'
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
DEFAULT_CACHE_DIR = '~/.cache'


def _get_mmcv_home():
    mmcv_home = os.path.expanduser(
        os.getenv(
            ENV_MMCV_HOME,
            os.path.join(
                os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv')))

    mkdir_or_exist(mmcv_home)
    return mmcv_home


def load_state_dict(module, state_dict, strict=False, logger=None):
    """Load state_dict to a module.

    This method is modified from :meth:`torch.nn.Module.load_state_dict`.
    Default value for ``strict`` is set to ``False`` and the message for
    param mismatch will be shown even if strict is False.

    Args:
        module (Module): Module that receives the state_dict.
        state_dict (OrderedDict): Weights.
        strict (bool): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
        logger (:obj:`logging.Logger`, optional): Logger to log the error
            message. If not specified, print function will be used.
    """
    unexpected_keys = []
    all_missing_keys = []
    err_msg = []

    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    # use _load_from_state_dict to enable checkpoint version control
    def load(module, prefix=''):
        # recursively check parallel module in case that the model has a
        # complicated structure, e.g., nn.Module(nn.Module(DDP))
        if is_module_wrapper(module):
            module = module.module
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(state_dict, prefix, local_metadata, True,
                                     all_missing_keys, unexpected_keys,
                                     err_msg)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(module)
    load = None  # break load->load reference cycle

    # ignore "num_batches_tracked" of BN layers
    missing_keys = [
        key for key in all_missing_keys if 'num_batches_tracked' not in key
    ]

    if unexpected_keys:
        err_msg.append('unexpected key in source '
                       f'state_dict: {", ".join(unexpected_keys)}\n')
    if missing_keys:
        err_msg.append(
            f'missing keys in source state_dict: {", ".join(missing_keys)}\n')

    rank, _ = get_dist_info()
    if len(err_msg) > 0 and rank == 0:
        err_msg.insert(
            0, 'The model and loaded state dict do not match exactly\n')
        err_msg = '\n'.join(err_msg)
        if strict:
            raise RuntimeError(err_msg)
        elif logger is not None:
            logger.warning(err_msg)
        else:
            print(err_msg)


def get_torchvision_models():
    model_urls = dict()
    for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__):
        if ispkg:
            continue
        _zoo = import_module(f'torchvision.models.{name}')
        if hasattr(_zoo, 'model_urls'):
            _urls = getattr(_zoo, 'model_urls')
            model_urls.update(_urls)
    return model_urls


def get_external_models():
    mmcv_home = _get_mmcv_home()
    default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json')
    default_urls = load_file(default_json_path)
    assert isinstance(default_urls, dict)
    external_json_path = osp.join(mmcv_home, 'open_mmlab.json')
    if osp.exists(external_json_path):
        external_urls = load_file(external_json_path)
        assert isinstance(external_urls, dict)
        default_urls.update(external_urls)

    return default_urls


def get_mmcls_models():
    mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json')
    mmcls_urls = load_file(mmcls_json_path)

    return mmcls_urls


def get_deprecated_model_names():
    deprecate_json_path = osp.join(mmcv.__path__[0],
                                   'model_zoo/deprecated.json')
    deprecate_urls = load_file(deprecate_json_path)
    assert isinstance(deprecate_urls, dict)

    return deprecate_urls


def _process_mmcls_checkpoint(checkpoint):
    state_dict = checkpoint['state_dict']
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k.startswith('backbone.'):
            new_state_dict[k[9:]] = v
    new_checkpoint = dict(state_dict=new_state_dict)

    return new_checkpoint


class CheckpointLoader:
    """A general checkpoint loader to manage all schemes."""

    _schemes = {}

    @classmethod
    def _register_scheme(cls, prefixes, loader, force=False):
        if isinstance(prefixes, str):
            prefixes = [prefixes]
        else:
            assert isinstance(prefixes, (list, tuple))
        for prefix in prefixes:
            if (prefix not in cls._schemes) or force:
                cls._schemes[prefix] = loader
            else:
                raise KeyError(
                    f'{prefix} is already registered as a loader backend, '
                    'add "force=True" if you want to override it')
        # sort, longer prefixes take priority
        cls._schemes = OrderedDict(
            sorted(cls._schemes.items(), key=lambda t: t[0], reverse=True))

    @classmethod
    def register_scheme(cls, prefixes, loader=None, force=False):
        """Register a loader to CheckpointLoader.

        This method can be used as a normal class method or a decorator.

        Args:
            prefixes (str or list[str] or tuple[str]):
            The prefix of the registered loader.
            loader (function, optional): The loader function to be registered.
                When this method is used as a decorator, loader is None.
                Defaults to None.
            force (bool, optional): Whether to override the loader
                if the prefix has already been registered. Defaults to False.
        """

        if loader is not None:
            cls._register_scheme(prefixes, loader, force=force)
            return

        def _register(loader_cls):
            cls._register_scheme(prefixes, loader_cls, force=force)
            return loader_cls

        return _register

    @classmethod
    def _get_checkpoint_loader(cls, path):
        """Finds a loader that supports the given path. Falls back to the local
        loader if no other loader is found.

        Args:
            path (str): checkpoint path

        Returns:
            loader (function): checkpoint loader
        """

        for p in cls._schemes:
            if path.startswith(p):
                return cls._schemes[p]

    @classmethod
    def load_checkpoint(cls, filename, map_location=None, logger=None):
        """load checkpoint through URL scheme path.

        Args:
            filename (str): checkpoint file name with given prefix
            map_location (str, optional): Same as :func:`torch.load`.
                Default: None
            logger (:mod:`logging.Logger`, optional): The logger for message.
                Default: None

        Returns:
            dict or OrderedDict: The loaded checkpoint.
        """

        checkpoint_loader = cls._get_checkpoint_loader(filename)
        class_name = checkpoint_loader.__name__
        mmcv.print_log(
            f'load checkpoint from {class_name[10:]} path: {filename}', logger)
        return checkpoint_loader(filename, map_location)


@CheckpointLoader.register_scheme(prefixes='')
def load_from_local(filename, map_location):
    """load checkpoint by local file path.

    Args:
        filename (str): local checkpoint file path
        map_location (str, optional): Same as :func:`torch.load`.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """

    if not osp.isfile(filename):
        raise IOError(f'{filename} is not a checkpoint file')
    checkpoint = torch.load(filename, map_location=map_location)
    return checkpoint


@CheckpointLoader.register_scheme(prefixes=('http://', 'https://'))
def load_from_http(filename, map_location=None, model_dir=None):
    """load checkpoint through HTTP or HTTPS scheme path. In distributed
    setting, this function only download checkpoint at local rank 0.

    Args:
        filename (str): checkpoint file path with modelzoo or
            torchvision prefix
        map_location (str, optional): Same as :func:`torch.load`.
        model_dir (string, optional): directory in which to save the object,
            Default: None

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    if rank == 0:
        checkpoint = model_zoo.load_url(
            filename, model_dir=model_dir, map_location=map_location)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            checkpoint = model_zoo.load_url(
                filename, model_dir=model_dir, map_location=map_location)
    return checkpoint


@CheckpointLoader.register_scheme(prefixes='pavi://')
def load_from_pavi(filename, map_location=None):
    """load checkpoint through the file path prefixed with pavi. In distributed
    setting, this function download ckpt at all ranks to different temporary
    directories.

    Args:
        filename (str): checkpoint file path with pavi prefix
        map_location (str, optional): Same as :func:`torch.load`.
          Default: None

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    assert filename.startswith('pavi://'), \
        f'Expected filename startswith `pavi://`, but get {filename}'
    model_path = filename[7:]

    try:
        from pavi import modelcloud
    except ImportError:
        raise ImportError(
            'Please install pavi to load checkpoint from modelcloud.')

    model = modelcloud.get(model_path)
    with TemporaryDirectory() as tmp_dir:
        downloaded_file = osp.join(tmp_dir, model.name)
        model.download(downloaded_file)
        checkpoint = torch.load(downloaded_file, map_location=map_location)
    return checkpoint


@CheckpointLoader.register_scheme(prefixes='s3://')
def load_from_ceph(filename, map_location=None, backend='petrel'):
    """load checkpoint through the file path prefixed with s3.  In distributed
    setting, this function download ckpt at all ranks to different temporary
    directories.

    Args:
        filename (str): checkpoint file path with s3 prefix
        map_location (str, optional): Same as :func:`torch.load`.
        backend (str, optional): The storage backend type. Options are 'ceph',
            'petrel'. Default: 'petrel'.

    .. warning::
        :class:`mmcv.fileio.file_client.CephBackend` will be deprecated,
        please use :class:`mmcv.fileio.file_client.PetrelBackend` instead.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    allowed_backends = ['ceph', 'petrel']
    if backend not in allowed_backends:
        raise ValueError(f'Load from Backend {backend} is not supported.')

    if backend == 'ceph':
        warnings.warn(
            'CephBackend will be deprecated, please use PetrelBackend instead')

    # CephClient and PetrelBackend have the same prefix 's3://' and the latter
    # will be chosen as default. If PetrelBackend can not be instantiated
    # successfully, the CephClient will be chosen.
    try:
        file_client = FileClient(backend=backend)
    except ImportError:
        allowed_backends.remove(backend)
        file_client = FileClient(backend=allowed_backends[0])

    with io.BytesIO(file_client.get(filename)) as buffer:
        checkpoint = torch.load(buffer, map_location=map_location)
    return checkpoint


@CheckpointLoader.register_scheme(prefixes=('modelzoo://', 'torchvision://'))
def load_from_torchvision(filename, map_location=None):
    """load checkpoint through the file path prefixed with modelzoo or
    torchvision.

    Args:
        filename (str): checkpoint file path with modelzoo or
            torchvision prefix
        map_location (str, optional): Same as :func:`torch.load`.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    model_urls = get_torchvision_models()
    if filename.startswith('modelzoo://'):
        warnings.warn('The URL scheme of "modelzoo://" is deprecated, please '
                      'use "torchvision://" instead')
        model_name = filename[11:]
    else:
        model_name = filename[14:]
    return load_from_http(model_urls[model_name], map_location=map_location)


@CheckpointLoader.register_scheme(prefixes=('open-mmlab://', 'openmmlab://'))
def load_from_openmmlab(filename, map_location=None):
    """load checkpoint through the file path prefixed with open-mmlab or
    openmmlab.

    Args:
        filename (str): checkpoint file path with open-mmlab or
        openmmlab prefix
        map_location (str, optional): Same as :func:`torch.load`.
          Default: None

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """

    model_urls = get_external_models()
    prefix_str = 'open-mmlab://'
    if filename.startswith(prefix_str):
        model_name = filename[13:]
    else:
        model_name = filename[12:]
        prefix_str = 'openmmlab://'

    deprecated_urls = get_deprecated_model_names()
    if model_name in deprecated_urls:
        warnings.warn(f'{prefix_str}{model_name} is deprecated in favor '
                      f'of {prefix_str}{deprecated_urls[model_name]}')
        model_name = deprecated_urls[model_name]
    model_url = model_urls[model_name]
    # check if is url
    if model_url.startswith(('http://', 'https://')):
        checkpoint = load_from_http(model_url, map_location=map_location)
    else:
        filename = osp.join(_get_mmcv_home(), model_url)
        if not osp.isfile(filename):
            raise IOError(f'{filename} is not a checkpoint file')
        checkpoint = torch.load(filename, map_location=map_location)
    return checkpoint


@CheckpointLoader.register_scheme(prefixes='mmcls://')
def load_from_mmcls(filename, map_location=None):
    """load checkpoint through the file path prefixed with mmcls.

    Args:
        filename (str): checkpoint file path with mmcls prefix
        map_location (str, optional): Same as :func:`torch.load`.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """

    model_urls = get_mmcls_models()
    model_name = filename[8:]
    checkpoint = load_from_http(
        model_urls[model_name], map_location=map_location)
    checkpoint = _process_mmcls_checkpoint(checkpoint)
    return checkpoint


def _load_checkpoint(filename, map_location=None, logger=None):
    """Load checkpoint from somewhere (modelzoo, file, url).

    Args:
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str, optional): Same as :func:`torch.load`.
           Default: None.
        logger (:mod:`logging.Logger`, optional): The logger for error message.
           Default: None

    Returns:
        dict or OrderedDict: The loaded checkpoint. It can be either an
           OrderedDict storing model weights or a dict containing other
           information, which depends on the checkpoint.
    """
    return CheckpointLoader.load_checkpoint(filename, map_location, logger)


def _load_checkpoint_with_prefix(prefix, filename, map_location=None):
    """Load partial pretrained model with specific prefix.

    Args:
        prefix (str): The prefix of sub-module.
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str | None): Same as :func:`torch.load`. Default: None.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """

    checkpoint = _load_checkpoint(filename, map_location=map_location)

    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    else:
        state_dict = checkpoint
    if not prefix.endswith('.'):
        prefix += '.'
    prefix_len = len(prefix)

    state_dict = {
        k[prefix_len:]: v
        for k, v in state_dict.items() if k.startswith(prefix)
    }

    assert state_dict, f'{prefix} is not in the pretrained model'
    return state_dict


def load_checkpoint(model,
                    filename,
                    map_location=None,
                    strict=False,
                    logger=None,
                    revise_keys=[(r'^module\.', '')]):
    """Load checkpoint from a file or URI.

    Args:
        model (Module): Module to load checkpoint.
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str): Same as :func:`torch.load`.
        strict (bool): Whether to allow different params for the model and
            checkpoint.
        logger (:mod:`logging.Logger` or None): The logger for error message.
        revise_keys (list): A list of customized keywords to modify the
            state_dict in checkpoint. Each item is a (pattern, replacement)
            pair of the regular expression operations. Default: strip
            the prefix 'module.' by [(r'^module\\.', '')].

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    checkpoint = _load_checkpoint(filename, map_location, logger)
    # OrderedDict is a subclass of dict
    if not isinstance(checkpoint, dict):
        raise RuntimeError(
            f'No state_dict found in checkpoint file {filename}')
    # get state_dict from checkpoint
    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    else:
        state_dict = checkpoint

    # strip prefix of state_dict
    metadata = getattr(state_dict, '_metadata', OrderedDict())
    for p, r in revise_keys:
        state_dict = OrderedDict(
            {re.sub(p, r, k): v
             for k, v in state_dict.items()})
    # Keep metadata in state_dict
    state_dict._metadata = metadata

    # load state_dict
    load_state_dict(model, state_dict, strict, logger)
    return checkpoint


def weights_to_cpu(state_dict):
    """Copy a model state_dict to cpu.

    Args:
        state_dict (OrderedDict): Model weights on GPU.

    Returns:
        OrderedDict: Model weights on GPU.
    """
    state_dict_cpu = OrderedDict()
    for key, val in state_dict.items():
        state_dict_cpu[key] = val.cpu()
    # Keep metadata in state_dict
    state_dict_cpu._metadata = getattr(state_dict, '_metadata', OrderedDict())
    return state_dict_cpu


def _save_to_state_dict(module, destination, prefix, keep_vars):
    """Saves module state to `destination` dictionary.

    This method is modified from :meth:`torch.nn.Module._save_to_state_dict`.

    Args:
        module (nn.Module): The module to generate state_dict.
        destination (dict): A dict where state will be stored.
        prefix (str): The prefix for parameters and buffers used in this
            module.
    """
    for name, param in module._parameters.items():
        if param is not None:
            destination[prefix + name] = param if keep_vars else param.detach()
    for name, buf in module._buffers.items():
        # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d
        if buf is not None:
            destination[prefix + name] = buf if keep_vars else buf.detach()


def get_state_dict(module, destination=None, prefix='', keep_vars=False):
    """Returns a dictionary containing a whole state of the module.

    Both parameters and persistent buffers (e.g. running averages) are
    included. Keys are corresponding parameter and buffer names.

    This method is modified from :meth:`torch.nn.Module.state_dict` to
    recursively check parallel module in case that the model has a complicated
    structure, e.g., nn.Module(nn.Module(DDP)).

    Args:
        module (nn.Module): The module to generate state_dict.
        destination (OrderedDict): Returned dict for the state of the
            module.
        prefix (str): Prefix of the key.
        keep_vars (bool): Whether to keep the variable property of the
            parameters. Default: False.

    Returns:
        dict: A dictionary containing a whole state of the module.
    """
    # recursively check parallel module in case that the model has a
    # complicated structure, e.g., nn.Module(nn.Module(DDP))
    if is_module_wrapper(module):
        module = module.module

    # below is the same as torch.nn.Module.state_dict()
    if destination is None:
        destination = OrderedDict()
        destination._metadata = OrderedDict()
    destination._metadata[prefix[:-1]] = local_metadata = dict(
        version=module._version)
    _save_to_state_dict(module, destination, prefix, keep_vars)
    for name, child in module._modules.items():
        if child is not None:
            get_state_dict(
                child, destination, prefix + name + '.', keep_vars=keep_vars)
    for hook in module._state_dict_hooks.values():
        hook_result = hook(module, destination, prefix, local_metadata)
        if hook_result is not None:
            destination = hook_result
    return destination


def save_checkpoint(model,
                    filename,
                    optimizer=None,
                    meta=None,
                    file_client_args=None):
    """Save checkpoint to file.

    The checkpoint will have 3 fields: ``meta``, ``state_dict`` and
    ``optimizer``. By default ``meta`` will contain version and time info.

    Args:
        model (Module): Module whose params are to be saved.
        filename (str): Checkpoint filename.
        optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
        meta (dict, optional): Metadata to be saved in checkpoint.
        file_client_args (dict, optional): Arguments to instantiate a
            FileClient. See :class:`mmcv.fileio.FileClient` for details.
            Default: None.
            `New in version 1.3.16.`
    """
    if meta is None:
        meta = {}
    elif not isinstance(meta, dict):
        raise TypeError(f'meta must be a dict or None, but got {type(meta)}')
    meta.update(mmcv_version=mmcv.__version__, time=time.asctime())

    if is_module_wrapper(model):
        model = model.module

    if hasattr(model, 'CLASSES') and model.CLASSES is not None:
        # save class name to the meta
        meta.update(CLASSES=model.CLASSES)

    checkpoint = {
        'meta': meta,
        'state_dict': weights_to_cpu(get_state_dict(model))
    }
    # save optimizer state dict in the checkpoint
    if isinstance(optimizer, Optimizer):
        checkpoint['optimizer'] = optimizer.state_dict()
    elif isinstance(optimizer, dict):
        checkpoint['optimizer'] = {}
        for name, optim in optimizer.items():
            checkpoint['optimizer'][name] = optim.state_dict()

    if filename.startswith('pavi://'):
        if file_client_args is not None:
            raise ValueError(
                'file_client_args should be "None" if filename starts with'
                f'"pavi://", but got {file_client_args}')
        try:
            from pavi import modelcloud
            from pavi import exception
        except ImportError:
            raise ImportError(
                'Please install pavi to load checkpoint from modelcloud.')
        model_path = filename[7:]
        root = modelcloud.Folder()
        model_dir, model_name = osp.split(model_path)
        try:
            model = modelcloud.get(model_dir)
        except exception.NodeNotFoundError:
            model = root.create_training_model(model_dir)
        with TemporaryDirectory() as tmp_dir:
            checkpoint_file = osp.join(tmp_dir, model_name)
            with open(checkpoint_file, 'wb') as f:
                torch.save(checkpoint, f)
                f.flush()
            model.create_file(checkpoint_file, name=model_name)
    else:
        file_client = FileClient.infer_client(file_client_args, filename)
        with io.BytesIO() as f:
            torch.save(checkpoint, f)
            file_client.put(f.getvalue(), filename)