Spaces:
Runtime error
Runtime error
File size: 9,572 Bytes
f7ac35e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# Copyright (c) OpenMMLab. All rights reserved.
import io
import os.path as osp
from pathlib import Path
import cv2
import numpy as np
from cv2 import (IMREAD_COLOR, IMREAD_GRAYSCALE, IMREAD_IGNORE_ORIENTATION,
IMREAD_UNCHANGED)
from annotator.uniformer.mmcv.utils import check_file_exist, is_str, mkdir_or_exist
try:
from turbojpeg import TJCS_RGB, TJPF_BGR, TJPF_GRAY, TurboJPEG
except ImportError:
TJCS_RGB = TJPF_GRAY = TJPF_BGR = TurboJPEG = None
try:
from PIL import Image, ImageOps
except ImportError:
Image = None
try:
import tifffile
except ImportError:
tifffile = None
jpeg = None
supported_backends = ['cv2', 'turbojpeg', 'pillow', 'tifffile']
imread_flags = {
'color': IMREAD_COLOR,
'grayscale': IMREAD_GRAYSCALE,
'unchanged': IMREAD_UNCHANGED,
'color_ignore_orientation': IMREAD_IGNORE_ORIENTATION | IMREAD_COLOR,
'grayscale_ignore_orientation':
IMREAD_IGNORE_ORIENTATION | IMREAD_GRAYSCALE
}
imread_backend = 'cv2'
def use_backend(backend):
"""Select a backend for image decoding.
Args:
backend (str): The image decoding backend type. Options are `cv2`,
`pillow`, `turbojpeg` (see https://github.com/lilohuang/PyTurboJPEG)
and `tifffile`. `turbojpeg` is faster but it only supports `.jpeg`
file format.
"""
assert backend in supported_backends
global imread_backend
imread_backend = backend
if imread_backend == 'turbojpeg':
if TurboJPEG is None:
raise ImportError('`PyTurboJPEG` is not installed')
global jpeg
if jpeg is None:
jpeg = TurboJPEG()
elif imread_backend == 'pillow':
if Image is None:
raise ImportError('`Pillow` is not installed')
elif imread_backend == 'tifffile':
if tifffile is None:
raise ImportError('`tifffile` is not installed')
def _jpegflag(flag='color', channel_order='bgr'):
channel_order = channel_order.lower()
if channel_order not in ['rgb', 'bgr']:
raise ValueError('channel order must be either "rgb" or "bgr"')
if flag == 'color':
if channel_order == 'bgr':
return TJPF_BGR
elif channel_order == 'rgb':
return TJCS_RGB
elif flag == 'grayscale':
return TJPF_GRAY
else:
raise ValueError('flag must be "color" or "grayscale"')
def _pillow2array(img, flag='color', channel_order='bgr'):
"""Convert a pillow image to numpy array.
Args:
img (:obj:`PIL.Image.Image`): The image loaded using PIL
flag (str): Flags specifying the color type of a loaded image,
candidates are 'color', 'grayscale' and 'unchanged'.
Default to 'color'.
channel_order (str): The channel order of the output image array,
candidates are 'bgr' and 'rgb'. Default to 'bgr'.
Returns:
np.ndarray: The converted numpy array
"""
channel_order = channel_order.lower()
if channel_order not in ['rgb', 'bgr']:
raise ValueError('channel order must be either "rgb" or "bgr"')
if flag == 'unchanged':
array = np.array(img)
if array.ndim >= 3 and array.shape[2] >= 3: # color image
array[:, :, :3] = array[:, :, (2, 1, 0)] # RGB to BGR
else:
# Handle exif orientation tag
if flag in ['color', 'grayscale']:
img = ImageOps.exif_transpose(img)
# If the image mode is not 'RGB', convert it to 'RGB' first.
if img.mode != 'RGB':
if img.mode != 'LA':
# Most formats except 'LA' can be directly converted to RGB
img = img.convert('RGB')
else:
# When the mode is 'LA', the default conversion will fill in
# the canvas with black, which sometimes shadows black objects
# in the foreground.
#
# Therefore, a random color (124, 117, 104) is used for canvas
img_rgba = img.convert('RGBA')
img = Image.new('RGB', img_rgba.size, (124, 117, 104))
img.paste(img_rgba, mask=img_rgba.split()[3]) # 3 is alpha
if flag in ['color', 'color_ignore_orientation']:
array = np.array(img)
if channel_order != 'rgb':
array = array[:, :, ::-1] # RGB to BGR
elif flag in ['grayscale', 'grayscale_ignore_orientation']:
img = img.convert('L')
array = np.array(img)
else:
raise ValueError(
'flag must be "color", "grayscale", "unchanged", '
f'"color_ignore_orientation" or "grayscale_ignore_orientation"'
f' but got {flag}')
return array
def imread(img_or_path, flag='color', channel_order='bgr', backend=None):
"""Read an image.
Args:
img_or_path (ndarray or str or Path): Either a numpy array or str or
pathlib.Path. If it is a numpy array (loaded image), then
it will be returned as is.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale`, `unchanged`,
`color_ignore_orientation` and `grayscale_ignore_orientation`.
By default, `cv2` and `pillow` backend would rotate the image
according to its EXIF info unless called with `unchanged` or
`*_ignore_orientation` flags. `turbojpeg` and `tifffile` backend
always ignore image's EXIF info regardless of the flag.
The `turbojpeg` backend only supports `color` and `grayscale`.
channel_order (str): Order of channel, candidates are `bgr` and `rgb`.
backend (str | None): The image decoding backend type. Options are
`cv2`, `pillow`, `turbojpeg`, `tifffile`, `None`.
If backend is None, the global imread_backend specified by
``mmcv.use_backend()`` will be used. Default: None.
Returns:
ndarray: Loaded image array.
"""
if backend is None:
backend = imread_backend
if backend not in supported_backends:
raise ValueError(f'backend: {backend} is not supported. Supported '
"backends are 'cv2', 'turbojpeg', 'pillow'")
if isinstance(img_or_path, Path):
img_or_path = str(img_or_path)
if isinstance(img_or_path, np.ndarray):
return img_or_path
elif is_str(img_or_path):
check_file_exist(img_or_path,
f'img file does not exist: {img_or_path}')
if backend == 'turbojpeg':
with open(img_or_path, 'rb') as in_file:
img = jpeg.decode(in_file.read(),
_jpegflag(flag, channel_order))
if img.shape[-1] == 1:
img = img[:, :, 0]
return img
elif backend == 'pillow':
img = Image.open(img_or_path)
img = _pillow2array(img, flag, channel_order)
return img
elif backend == 'tifffile':
img = tifffile.imread(img_or_path)
return img
else:
flag = imread_flags[flag] if is_str(flag) else flag
img = cv2.imread(img_or_path, flag)
if flag == IMREAD_COLOR and channel_order == 'rgb':
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
return img
else:
raise TypeError('"img" must be a numpy array or a str or '
'a pathlib.Path object')
def imfrombytes(content, flag='color', channel_order='bgr', backend=None):
"""Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Same as :func:`imread`.
backend (str | None): The image decoding backend type. Options are
`cv2`, `pillow`, `turbojpeg`, `None`. If backend is None, the
global imread_backend specified by ``mmcv.use_backend()`` will be
used. Default: None.
Returns:
ndarray: Loaded image array.
"""
if backend is None:
backend = imread_backend
if backend not in supported_backends:
raise ValueError(f'backend: {backend} is not supported. Supported '
"backends are 'cv2', 'turbojpeg', 'pillow'")
if backend == 'turbojpeg':
img = jpeg.decode(content, _jpegflag(flag, channel_order))
if img.shape[-1] == 1:
img = img[:, :, 0]
return img
elif backend == 'pillow':
buff = io.BytesIO(content)
img = Image.open(buff)
img = _pillow2array(img, flag, channel_order)
return img
else:
img_np = np.frombuffer(content, np.uint8)
flag = imread_flags[flag] if is_str(flag) else flag
img = cv2.imdecode(img_np, flag)
if flag == IMREAD_COLOR and channel_order == 'rgb':
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
return img
def imwrite(img, file_path, params=None, auto_mkdir=True):
"""Write image to file.
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not.
"""
if auto_mkdir:
dir_name = osp.abspath(osp.dirname(file_path))
mkdir_or_exist(dir_name)
return cv2.imwrite(file_path, img, params)
|