File size: 3,912 Bytes
f7ac35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import chain

from torch.nn.parallel import DataParallel

from .scatter_gather import scatter_kwargs


class MMDataParallel(DataParallel):
    """The DataParallel module that supports DataContainer.

    MMDataParallel has two main differences with PyTorch DataParallel:

    - It supports a custom type :class:`DataContainer` which allows more
      flexible control of input data during both GPU and CPU inference.
    - It implement two more APIs ``train_step()`` and ``val_step()``.

    Args:
        module (:class:`nn.Module`): Module to be encapsulated.
        device_ids (list[int]): Device IDS of modules to be scattered to.
            Defaults to None when GPU is not available.
        output_device (str | int): Device ID for output. Defaults to None.
        dim (int): Dimension used to scatter the data. Defaults to 0.
    """

    def __init__(self, *args, dim=0, **kwargs):
        super(MMDataParallel, self).__init__(*args, dim=dim, **kwargs)
        self.dim = dim

    def forward(self, *inputs, **kwargs):
        """Override the original forward function.

        The main difference lies in the CPU inference where the data in
        :class:`DataContainers` will still be gathered.
        """
        if not self.device_ids:
            # We add the following line thus the module could gather and
            # convert data containers as those in GPU inference
            inputs, kwargs = self.scatter(inputs, kwargs, [-1])
            return self.module(*inputs[0], **kwargs[0])
        else:
            return super().forward(*inputs, **kwargs)

    def scatter(self, inputs, kwargs, device_ids):
        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)

    def train_step(self, *inputs, **kwargs):
        if not self.device_ids:
            # We add the following line thus the module could gather and
            # convert data containers as those in GPU inference
            inputs, kwargs = self.scatter(inputs, kwargs, [-1])
            return self.module.train_step(*inputs[0], **kwargs[0])

        assert len(self.device_ids) == 1, \
            ('MMDataParallel only supports single GPU training, if you need to'
             ' train with multiple GPUs, please use MMDistributedDataParallel'
             'instead.')

        for t in chain(self.module.parameters(), self.module.buffers()):
            if t.device != self.src_device_obj:
                raise RuntimeError(
                    'module must have its parameters and buffers '
                    f'on device {self.src_device_obj} (device_ids[0]) but '
                    f'found one of them on device: {t.device}')

        inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
        return self.module.train_step(*inputs[0], **kwargs[0])

    def val_step(self, *inputs, **kwargs):
        if not self.device_ids:
            # We add the following line thus the module could gather and
            # convert data containers as those in GPU inference
            inputs, kwargs = self.scatter(inputs, kwargs, [-1])
            return self.module.val_step(*inputs[0], **kwargs[0])

        assert len(self.device_ids) == 1, \
            ('MMDataParallel only supports single GPU training, if you need to'
             ' train with multiple GPUs, please use MMDistributedDataParallel'
             ' instead.')

        for t in chain(self.module.parameters(), self.module.buffers()):
            if t.device != self.src_device_obj:
                raise RuntimeError(
                    'module must have its parameters and buffers '
                    f'on device {self.src_device_obj} (device_ids[0]) but '
                    f'found one of them on device: {t.device}')

        inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
        return self.module.val_step(*inputs[0], **kwargs[0])