Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,708 Bytes
8fd2f2f 879e310 8fd2f2f 2c1dddf 8fd2f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import numpy as np
from lib.farancia import IImage
from PIL import Image
from i2v_enhance import i2v_enhance_interface
from dataloader.dataset_factory import SingleImageDatasetFactory
from pytorch_lightning import Trainer, LightningDataModule, seed_everything
import math
from diffusion_trainer import streaming_svd as streaming_svd_model
import torch
from safetensors.torch import load_file as load_safetensors
from utils.loader import download_ckpt
from functools import partial
from dataloader.video_data_module import VideoDataModule
from pathlib import Path
from pytorch_lightning.cli import LightningCLI, LightningArgumentParser
from pytorch_lightning import LightningModule
import sys
import os
from copy import deepcopy
from utils.aux import ensure_annotation_class
from diffusers import FluxPipeline
from typing import Union
class CustomCLI(LightningCLI):
def add_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
parser.add_argument("--image", type=Path,
help="Path to the input image(s)")
parser.add_argument("--output", type=Path,
help="Path to the output folder")
parser.add_argument("--num_frames", type=int, default=100,
help="Number of frames to generate.")
parser.add_argument("--out_fps", type=int, default=24,
help="Framerate of the generated video.")
parser.add_argument("--chunk_size", type=int, default=38,
help="Chunk size used in randomized blending.")
parser.add_argument("--overlap_size", type=int, default=12,
help="Overlap size used in randomized blending.")
parser.add_argument("--use_randomized_blending", action="store_true",
help="Wether to use randomized blending.")
parser.add_argument("--use_fp16", action="store_true",
help="Wether to use float16 quantization.")
parser.add_argument("--prompt", type=str, default = "")
return parser
class StreamingSVD():
def __init__(self, load_argv = True) -> None:
call_fol = Path(os.getcwd()).resolve()
code_fol = Path(__file__).resolve().parent
code_fol = os.path.relpath(code_fol, call_fol)
argv_backup = deepcopy(sys.argv)
if "--use_fp16" in sys.argv:
os.environ["STREAMING_USE_FP16"] = "True"
sys.argv = [__file__]
sys.argv.extend(self.__config_call(argv_backup[1:] if load_argv else [], code_fol))
cli = CustomCLI(LightningModule, run=False, subclass_mode_model=True, parser_kwargs={
"parser_mode": "omegaconf"}, save_config_callback=None)
self.__init_models(cli)
self.__init_fields(cli)
sys.argv = argv_backup
def __init_models(self, cli):
model = cli.model
trainer = cli.trainer
path = download_ckpt(
local_path=model.diff_trainer_params.streamingsvd_ckpt.ckpt_path_local,
global_path=model.diff_trainer_params.streamingsvd_ckpt.ckpt_path_global
)
if path.endswith(".safetensors"):
ckpt = load_safetensors(path)
else:
ckpt = torch.load(path, map_location="cpu")["state_dict"]
model.load_state_dict(ckpt) # load trained model
trainer = cli.trainer
data_module_loader = partial(VideoDataModule, workers=0)
vfi = i2v_enhance_interface.vfi_init(model.vfi)
enhance_pipeline, enhance_generator = i2v_enhance_interface.i2v_enhance_init(
model.i2v_enhance)
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
flux_pipe.enable_model_cpu_offload()
# store of objects
model: streaming_svd_model
data_module_loader: LightningDataModule
trainer: Trainer
self.model = model
self.vfi = vfi
self.data_module_loader = data_module_loader
self.enhance_pipeline = enhance_pipeline
self.enhance_generator = enhance_generator
self.trainer = trainer
self.flux_pipe = flux_pipe
def __init_fields(self, cli):
self.input_path = cli.config["image"]
self.output_path = cli.config["output"]
self.num_frames = cli.config["num_frames"]
self.fps = cli.config["out_fps"]
self.use_randomized_blending = cli.config["use_randomized_blending"]
self.chunk_size = cli.config["chunk_size"]
self.overlap_size = cli.config["overlap_size"]
self.prompt = cli.config["prompt"]
def __config_call(self, config_cmds, code_fol):
cmds = [cmd for cmd in config_cmds if len(cmd) > 0]
cmd_init = []
cmd_init.append(f"--config")
cmd_init.append(f"{code_fol}/config.yaml")
if "--use_fp16" in config_cmds:
cmd_init.append(f"--trainer.precision=16-true")
cmd_init.extend(cmds)
return cmd_init
# interfaces
def streaming_t2v(self, prompt, num_frames: int, use_randomized_blending: bool = False, chunk_size: int = 38, overlap_size: int = 12, seed=33):
image = self.text_to_image(prompt=prompt)
return self.streaming_i2v(image, num_frames=num_frames, use_randomized_blending=use_randomized_blending, chunk_size=chunk_size, overlap_size=overlap_size, seed=seed)
def streaming_i2v(self, image, num_frames: int, use_randomized_blending: bool = False, chunk_size: int = 38, overlap_size: int = 12, seed=33) -> np.array:
video, scaled_outpainted_image, expanded_size = self.image_to_video(
image, num_frames=(num_frames+1)//2, seed=seed)
max_memory_allocated = torch.cuda.max_memory_allocated()
print(
f"max_memory_allocated at image_to_video: {max_memory_allocated}")
video = self.enhance_video(image=IImage(scaled_outpainted_image).numpy(), video=video, chunk_size=chunk_size, overlap_size=overlap_size,
use_randomized_blending=use_randomized_blending, seed=seed)
video = self.interpolate_video(video, dest_num_frames=num_frames)
# scale/crop back to input size
if image.shape[0] == 1:
image = image[0]
video = IImage(video, vmin=0, vmax=255).resize(expanded_size[::-1]).crop((0, 0, image.shape[1], image.shape[0])).numpy()
print(
f"max_memory_allocated at interpolate_video: {max_memory_allocated}")
return video
# StreamingSVD pipeline
def streaming(self, image: np.ndarray):
datamodule = self.data_module_loader(predict_dataset_factory=SingleImageDatasetFactory(
file=image))
self.trainer.predict(model=self.model, datamodule=datamodule)
video = self.trainer.generated_video
expanded_size = self.trainer.expanded_size
scaled_outpainted_image = self.trainer.scaled_outpainted_image
return video, scaled_outpainted_image, expanded_size
def image_to_video(self, image: Union[np.ndarray, str], num_frames: int, seed=33) -> tuple[np.ndarray,Image,list[int]]:
seed_everything(seed)
if isinstance(image, str):
image = IImage.open(image).numpy()
if image.shape[0] == 1 and image.ndim == 4:
image = image[0]
assert image.shape[-1] == 3 and image.shape[0] > 1, "Wrong image format. Assuming shape [H W C], with C = 3."
assert image.dtype == "uint8", "Wrong dtype for input image. Must be uint8."
# compute necessary number of chunks
n_cond_frames = self.model.inference_params.num_conditional_frames
n_frames_per_gen = self.model.sampler.guider.num_frames
n_autoregressive_generations = math.ceil(
(num_frames - n_frames_per_gen) / (n_frames_per_gen - n_cond_frames))
self.model.inference_params.n_autoregressive_generations = int(
n_autoregressive_generations)
print(" --- STREAMING ----- [START]")
video, scaled_outpainted_image, expanded_size = self.streaming(
image=image)
print(f" --- STREAMING ----- [FINISHED]: {video.shape}")
video = video[:num_frames]
return video, scaled_outpainted_image, expanded_size
def enhance_video(self, video: Union[np.ndarray, str], image: np.ndarray = None, chunk_size = 38, overlap_size=12, strength=0.97, use_randomized_blending=False, seed=33,num_frames = None):
seed_everything(seed)
if isinstance(video, str):
video = IImage.open(video).numpy()
if image is None:
image = video[0]
print("ATTENTION: We take first frame of previous stage as input frame for enhance. ")
if num_frames is not None:
video = video[:num_frames, ...]
if not use_randomized_blending:
chunk_size = video.shape[0]
overlap_size = 0
if image.ndim == 3:
image = image[None]
image = [Image.fromarray(
IImage(image, vmin=0, vmax=255).resize((720, 1280)).numpy()[0])]
video = np.split(video, video.shape[0])
video = [Image.fromarray(frame[0]).resize((1280, 720))
for frame in video]
print(
f"---- ENHANCE ---- [START]. Video length = {len(video)}. Randomized Blending = {use_randomized_blending}. Chunk size = {chunk_size}. Overlap size = {overlap_size}.")
video_enhanced = i2v_enhance_interface.i2v_enhance_process(
image=image, video=video, pipeline=self.enhance_pipeline, generator=self.enhance_generator,
chunk_size=chunk_size, overlap_size=overlap_size, strength=strength, use_randomized_blending=use_randomized_blending)
video_enhanced = np.stack([np.asarray(frame)
for frame in video_enhanced], axis=0)
print("---- ENHANCE ---- [FINISHED].")
return video_enhanced
def interpolate_video(self, video: np.ndarray, dest_num_frames: int):
video = np.split(video, len(video))
video = [frame[0] for frame in video]
print(" ---- VFI ---- [START]")
self.vfi.device()
video_vfi = i2v_enhance_interface.vfi_process(
video=video, vfi=self.vfi, video_len=dest_num_frames)
video_vfi = np.stack([np.asarray(frame)
for frame in video_vfi], axis=0)
self.vfi.unload()
print(f"---- VFI ---- [FINISHED]. Video length = {len(video_vfi)}")
return video_vfi
# T2I method
def text_to_image(self, prompt, seed=33):
# FLUX
print("[FLUX] Generating image from text prompt")
out = self.flux_pipe(
prompt=prompt,
guidance_scale=0,
height=720,
width=1280,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator(
device=self.model.device).manual_seed(seed),
).images[0]
print("[FLUX] Finished")
return np.array(out)
if __name__ == "__main__":
@ensure_annotation_class
def get_input_data(input_path: Path = None):
if input_path.is_file():
inputs = [input_path]
else:
suffixes = ["*.[jJ][pP][gG]", "*.[pP][nN][gG]",
"*.[jJ][pP][eE][gG]", "*.[bB][mM][pP]"] # loading png, jpg and bmp images
inputs = []
for suffix in suffixes:
inputs.extend(list(input_path.glob(suffix)))
assert len(
inputs) > 0, "No images found. Please make sure the input path is correct."
img_as_np = [IImage.open(input).numpy() for input in inputs]
return zip(img_as_np, inputs)
streaming_svd = StreamingSVD()
num_frames = streaming_svd.num_frames
chunk_size = streaming_svd.chunk_size
overlap_size = streaming_svd.overlap_size
use_randomized_blending = streaming_svd.use_randomized_blending
if not use_randomized_blending:
chunk_size = (num_frames + 1)//2
overlap_size = 0
result_path = Path(streaming_svd.output_path)
seed = 33
assert result_path.exists() is False or result_path.is_dir(
), "Output path must be the path to a folder."
prompt = streaming_svd.prompt
if len(prompt) == 0:
for img, img_path in get_input_data(streaming_svd.input_path):
video = streaming_svd.streaming_i2v(
image=img, num_frames=num_frames, use_randomized_blending=use_randomized_blending, chunk_size=chunk_size, overlap_size=overlap_size, seed=33)
if not result_path.exists():
result_path.mkdir(parents=True)
result_file = result_path / (img_path.stem+".mp4")
result_file = result_file.as_posix()
IImage(video, vmin=0, vmax=255).setFps(
streaming_svd.fps).save(result_file)
print(f"Video created at: {result_file}")
else:
video = streaming_svd.streaming_t2v(
prompt=prompt, num_frames=num_frames, use_randomized_blending=use_randomized_blending, chunk_size=chunk_size, overlap_size=overlap_size, seed=33)
prompt_file = prompt.replace(" ", "_").replace(
".", "_").replace("/", "_").replace(":", "_")
prompt_file = prompt_file[:15]
if not result_path.exists():
result_path.mkdir(parents=True)
result_file = result_path / (prompt_file+".mp4")
result_file = result_file.as_posix()
IImage(video, vmin=0, vmax=255).setFps(
streaming_svd.fps).save(result_file)
print(f"Video created at: {result_file}")
|