Spaces:
Sleeping
Sleeping
File size: 22,919 Bytes
0d2dd65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
import json
import datetime
from huggingface_hub import hf_hub_url, hf_hub_download
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.OneFormer import OneformerSegmenter
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSamplerSpaCFG
from ldm.models.autoencoder import DiagonalGaussianDistribution
SEGMENT_MODEL_DICT = {
'Oneformer': OneformerSegmenter,
}
MASK_MODEL_DICT = {
'Oneformer': OneformerSegmenter,
}
urls = {
'shi-labs/oneformer_coco_swin_large': ['150_16_swin_l_oneformer_coco_100ep.pth'],
'PAIR/PAIR-diffusion-sdv15-coco-finetune': ['model_e91.ckpt']
}
WTS_DICT = {
}
if os.path.exists('checkpoints') == False:
os.mkdir('checkpoints')
for repo in urls:
files = urls[repo]
for file in files:
url = hf_hub_url(repo, file)
name_ckp = url.split('/')[-1]
WTS_DICT[repo] = hf_hub_download(repo_id=repo, filename=file)
#main model
model = create_model('configs/pair_diff.yaml').cpu()
model.load_state_dict(load_state_dict(WTS_DICT['PAIR/PAIR-diffusion-sdv15-coco-finetune'], location='cuda'))
save_dir = 'results/'
model = model.cuda()
ddim_sampler = DDIMSamplerSpaCFG(model)
save_memory = False
class ImageComp:
def __init__(self, edit_operation):
self.input_img = None
self.input_pmask = None
self.input_segmask = None
self.input_mask = None
self.input_points = []
self.input_scale = 1
self.ref_img = None
self.ref_pmask = None
self.ref_segmask = None
self.ref_mask = None
self.ref_points = []
self.ref_scale = 1
self.multi_modal = False
self.H = None
self.W = None
self.kernel = np.ones((5, 5), np.uint8)
self.edit_operation = edit_operation
self.init_segmentation_model()
os.makedirs(save_dir, exist_ok=True)
self.base_prompt = 'A picture of {}'
def init_segmentation_model(self, mask_model='Oneformer', segment_model='Oneformer'):
self.segment_model_name = segment_model
self.mask_model_name = mask_model
self.segment_model = SEGMENT_MODEL_DICT[segment_model](WTS_DICT['shi-labs/oneformer_coco_swin_large'])
if mask_model == 'Oneformer' and segment_model == 'Oneformer':
self.mask_model_inp = self.segment_model
self.mask_model_ref = self.segment_model
else:
self.mask_model_inp = MASK_MODEL_DICT[mask_model]()
self.mask_model_ref = MASK_MODEL_DICT[mask_model]()
print(f"Segmentation Models initialized with {mask_model} as mask and {segment_model} as segment")
def init_input_canvas(self, img):
img = HWC3(img)
img = resize_image(img, 512)
if self.segment_model_name == 'Oneformer':
detected_seg = self.segment_model(img, 'semantic')
elif self.segment_model_name == 'SAM':
raise NotImplementedError
if self.mask_model_name == 'Oneformer':
detected_mask = self.mask_model_inp(img, 'panoptic')[0]
elif self.mask_model_name == 'SAM':
detected_mask = self.mask_model_inp(img)
self.input_points = []
self.input_img = img
self.input_pmask = detected_mask
self.input_segmask = detected_seg
self.H = img.shape[0]
self.W = img.shape[1]
return img
def init_ref_canvas(self, img):
img = HWC3(img)
img = resize_image(img, 512)
if self.segment_model_name == 'Oneformer':
detected_seg = self.segment_model(img, 'semantic')
elif self.segment_model_name == 'SAM':
raise NotImplementedError
if self.mask_model_name == 'Oneformer':
detected_mask = self.mask_model_ref(img, 'panoptic')[0]
elif self.mask_model_name == 'SAM':
detected_mask = self.mask_model_ref(img)
self.ref_points = []
print("Initialized ref", img.shape)
self.ref_img = img
self.ref_pmask = detected_mask
self.ref_segmask = detected_seg
return img
def select_input_object(self, evt: gr.SelectData):
idx = list(np.array(evt.index) * self.input_scale)
self.input_points.append(idx)
if self.mask_model_name == 'Oneformer':
mask = self._get_mask_from_panoptic(np.array(self.input_points), self.input_pmask)
else:
mask = self.mask_model_inp(self.input_img, self.input_points)
c_ids = self.input_segmask[np.array(self.input_points)[:,1], np.array(self.input_points)[:,0]]
unique_ids, counts = torch.unique(c_ids, return_counts=True)
c_id = int(unique_ids[torch.argmax(counts)].cpu().detach().numpy())
category = self.segment_model.metadata.stuff_classes[c_id]
# print(self.segment_model.metadata.stuff_classes)
self.input_mask = mask
mask = mask.cpu().numpy()
output = mask[:,:,None] * self.input_img + (1 - mask[:,:,None]) * self.input_img * 0.2
return output.astype(np.uint8), self.base_prompt.format(category)
def select_ref_object(self, evt: gr.SelectData):
idx = list(np.array(evt.index) * self.ref_scale)
self.ref_points.append(idx)
if self.mask_model_name == 'Oneformer':
mask = self._get_mask_from_panoptic(np.array(self.ref_points), self.ref_pmask)
else:
mask = self.mask_model_ref(self.ref_img, self.ref_points)
c_ids = self.ref_segmask[np.array(self.ref_points)[:,1], np.array(self.ref_points)[:,0]]
unique_ids, counts = torch.unique(c_ids, return_counts=True)
c_id = int(unique_ids[torch.argmax(counts)].cpu().detach().numpy())
category = self.segment_model.metadata.stuff_classes[c_id]
print("Category of reference object is:", category)
self.ref_mask = mask
mask = mask.cpu().numpy()
output = mask[:,:,None] * self.ref_img + (1 - mask[:,:,None]) * self.ref_img * 0.2
return output.astype(np.uint8)
def clear_points(self):
self.input_points = []
self.ref_points = []
zeros_inp = np.zeros(self.input_img.shape)
zeros_ref = np.zeros(self.ref_img.shape)
return zeros_inp, zeros_ref
def return_input_img(self):
return self.input_img
def _get_mask_from_panoptic(self, points, panoptic_mask):
panoptic_mask_ = panoptic_mask + 1
ids = panoptic_mask_[points[:,1], points[:,0]]
unique_ids, counts = torch.unique(ids, return_counts=True)
mask_id = unique_ids[torch.argmax(counts)]
final_mask = torch.zeros(panoptic_mask.shape).cuda()
final_mask[panoptic_mask_ == mask_id] = 1
return final_mask
def _process_mask(self, mask, panoptic_mask, segmask):
obj_class = mask * (segmask + 1)
unique_ids, counts = torch.unique(obj_class, return_counts=True)
obj_class = unique_ids[torch.argmax(counts[1:]) + 1] - 1
return mask, obj_class
def _edit_app(self, whole_ref):
"""
Manipulates the panoptic mask of input image to change appearance
"""
input_pmask = self.input_pmask
input_segmask = self.input_segmask
if whole_ref:
reference_mask = torch.ones(self.ref_pmask.shape).cuda()
else:
reference_mask, _ = self._process_mask(self.ref_mask, self.ref_pmask, self.ref_segmask)
edit_mask, _ = self._process_mask(self.input_mask, self.input_pmask, self.input_segmask)
# tmp = cv2.dilate(edit_mask.squeeze().cpu().numpy(), self.kernel, iterations = 2)
# region_mask = torch.tensor(tmp).cuda()
region_mask = edit_mask
ma = torch.max(input_pmask)
input_pmask[edit_mask == 1] = ma + 1
return reference_mask, input_pmask, input_segmask, region_mask, ma
def _add_object(self, input_mask, dilation_fac):
"""
Manipulates the panooptic mask of input image for adding objects
Args:
input_mask (numpy array): Region where new objects needs to be added
dilation factor (float): Controls edge merging region for adding objects
"""
input_pmask = self.input_pmask
input_segmask = self.input_segmask
reference_mask, obj_class = self._process_mask(self.ref_mask, self.ref_pmask, self.ref_segmask)
tmp = cv2.dilate(input_mask['mask'][:, :, 0], self.kernel, iterations = int(dilation_fac))
region = torch.tensor(tmp)
region_mask = torch.zeros_like(region).cuda()
region_mask[region > 127] = 1
mask_ = torch.tensor(input_mask['mask'][:, :, 0])
edit_mask = torch.zeros_like(mask_).cuda()
edit_mask[mask_ > 127] = 1
ma = torch.max(input_pmask)
input_pmask[edit_mask == 1] = ma + 1
print(obj_class)
input_segmask[edit_mask == 1] = obj_class.long()
return reference_mask, input_pmask, input_segmask, region_mask, ma
def _edit(self, input_mask, ref_mask, dilation_fac=1, whole_ref=False, inter=1):
"""
Entry point for all the appearance editing and add objects operations. The function manipulates the
appearance vectors and structure based on user input
Args:
input mask (numpy array): Region in input image which needs to be edited
dilation factor (float): Controls edge merging region for adding objects
whole_ref (bool): Flag for specifying if complete reference image should be used
inter (float): Interpolation of appearance between the reference appearance and the input appearance.
"""
input_img = (self.input_img/127.5 - 1)
input_img = torch.from_numpy(input_img.astype(np.float32)).cuda().unsqueeze(0).permute(0,3,1,2)
reference_img = (self.ref_img/127.5 - 1)
reference_img = torch.from_numpy(reference_img.astype(np.float32)).cuda().unsqueeze(0).permute(0,3,1,2)
if self.edit_operation == 'add_obj':
reference_mask, input_pmask, input_segmask, region_mask, ma = self._add_object(input_mask, dilation_fac)
elif self.edit_operation == 'edit_app':
reference_mask, input_pmask, input_segmask, region_mask, ma = self._edit_app(whole_ref)
#concat featurees
input_pmask = input_pmask.float().cuda().unsqueeze(0).unsqueeze(1)
_, mean_feat_inpt_conc, one_hot_inpt_conc, _ = model.get_appearance(model.appearance_net_conc, model.app_layer_conc, input_img, input_pmask, return_all=True)
reference_mask = reference_mask.float().cuda().unsqueeze(0).unsqueeze(1)
_, mean_feat_ref_conc, _, _ = model.get_appearance(model.appearance_net_conc, model.app_layer_conc, reference_img, reference_mask, return_all=True)
# if mean_feat_ref.shape[1] > 1:
if isinstance(mean_feat_inpt_conc, list):
appearance_conc = []
for i in range(len(mean_feat_inpt_conc)):
mean_feat_inpt_conc[i][:, ma + 1] = (1 - inter) * mean_feat_inpt_conc[i][:, ma + 1] + inter*mean_feat_ref_conc[i][:, 1]
splatted_feat_conc = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_conc[i], one_hot_inpt_conc)
splatted_feat_conc = torch.nn.functional.normalize(splatted_feat_conc)
splatted_feat_conc = torch.nn.functional.interpolate(splatted_feat_conc, (self.H//8, self.W//8))
appearance_conc.append(splatted_feat_conc)
appearance_conc = torch.cat(appearance_conc, dim=1)
else:
print("manipulating")
mean_feat_inpt_conc[:, ma + 1] = (1 - inter) * mean_feat_inpt_conc[:, ma + 1] + inter*mean_feat_ref_conc[:, 1]
splatted_feat_conc = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_conc, one_hot_inpt_conc)
appearance_conc = torch.nn.functional.normalize(splatted_feat_conc) #l2 normaliz
appearance_conc = torch.nn.functional.interpolate(appearance_conc, (self.H//8, self.W//8))
#cross attention features
_, mean_feat_inpt_ca, one_hot_inpt_ca, _ = model.get_appearance(model.appearance_net_ca, model.app_layer_ca, input_img, input_pmask, return_all=True)
_, mean_feat_ref_ca, _, _ = model.get_appearance(model.appearance_net_ca, model.app_layer_ca, reference_img, reference_mask, return_all=True)
# if mean_feat_ref.shape[1] > 1:
if isinstance(mean_feat_inpt_ca, list):
appearance_ca = []
for i in range(len(mean_feat_inpt_ca)):
mean_feat_inpt_ca[i][:, ma + 1] = (1 - inter) * mean_feat_inpt_ca[i][:, ma + 1] + inter*mean_feat_ref_ca[i][:, 1]
splatted_feat_ca = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_ca[i], one_hot_inpt_ca)
splatted_feat_ca = torch.nn.functional.normalize(splatted_feat_ca)
splatted_feat_ca = torch.nn.functional.interpolate(splatted_feat_ca, (self.H//8, self.W//8))
appearance_ca.append(splatted_feat_ca)
else:
print("manipulating")
mean_feat_inpt_ca[:, ma + 1] = (1 - inter) * mean_feat_inpt_ca[:, ma + 1] + inter*mean_feat_ref_ca[:, 1]
splatted_feat_ca = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_ca, one_hot_inpt_ca)
appearance_ca = torch.nn.functional.normalize(splatted_feat_ca) #l2 normaliz
appearance_ca = torch.nn.functional.interpolate(appearance_ca, (self.H//8, self.W//8))
input_segmask = ((input_segmask+1)/ 127.5 - 1.0).cuda().unsqueeze(0).unsqueeze(1)
structure = torch.nn.functional.interpolate(input_segmask, (self.H//8, self.W//8))
return structure, appearance_conc, appearance_ca, region_mask, input_img
def _edit_obj_var(self, input_mask, ignore_structure):
input_img = (self.input_img/127.5 - 1)
input_img = torch.from_numpy(input_img.astype(np.float32)).cuda().unsqueeze(0).permute(0,3,1,2)
input_pmask = self.input_pmask
input_segmask = self.input_segmask
ma = torch.max(input_pmask)
mask_ = torch.tensor(input_mask['mask'][:, :, 0])
edit_mask = torch.zeros_like(mask_).cuda()
edit_mask[mask_ > 127] = 1
tmp = edit_mask * (input_pmask + ma + 1)
if ignore_structure:
tmp = edit_mask
input_pmask = tmp * edit_mask + (1 - edit_mask) * input_pmask
input_pmask = input_pmask.float().cuda().unsqueeze(0).unsqueeze(1)
mask_ca_feat = self.input_pmask.float().cuda().unsqueeze(0).unsqueeze(1) if ignore_structure else input_pmask
print(torch.unique(mask_ca_feat))
appearance_conc,_,_,_ = model.get_appearance(model.appearance_net_conc, model.app_layer_conc, input_img, input_pmask, return_all=True)
appearance_ca = model.get_appearance(model.appearance_net_ca, model.app_layer_ca, input_img, mask_ca_feat)
appearance_conc = torch.nn.functional.interpolate(appearance_conc, (self.H//8, self.W//8))
appearance_ca = [torch.nn.functional.interpolate(ap, (self.H//8, self.W//8)) for ap in appearance_ca]
input_segmask = ((input_segmask+1)/ 127.5 - 1.0).cuda().unsqueeze(0).unsqueeze(1)
structure = torch.nn.functional.interpolate(input_segmask, (self.H//8, self.W//8))
tmp = input_mask['mask'][:, :, 0]
region = torch.tensor(tmp)
mask = torch.zeros_like(region).cuda()
mask[region > 127] = 1
return structure, appearance_conc, appearance_ca, mask, input_img
def get_caption(self, mask):
"""
Generates the captions based on a set template
Args:
mask (numpy array): Region of image based on which caption needs to be generated
"""
mask = mask['mask'][:, :, 0]
region = torch.tensor(mask).cuda()
mask = torch.zeros_like(region)
mask[region > 127] = 1
if torch.sum(mask) == 0:
return ""
c_ids = self.input_segmask * mask
unique_ids, counts = torch.unique(c_ids, return_counts=True)
c_id = int(unique_ids[torch.argmax(counts[1:]) + 1].cpu().detach().numpy())
category = self.segment_model.metadata.stuff_classes[c_id]
return self.base_prompt.format(category)
def save_result(self, input_mask, prompt, a_prompt, n_prompt,
ddim_steps, scale_s, scale_f, scale_t, seed, dilation_fac=1,inter=1,
free_form_obj_var=False, ignore_structure=False):
"""
Saves the current results with all the meta data
"""
meta_data = {}
meta_data['prompt'] = prompt
meta_data['a_prompt'] = a_prompt
meta_data['n_prompt'] = n_prompt
meta_data['seed'] = seed
meta_data['ddim_steps'] = ddim_steps
meta_data['scale_s'] = scale_s
meta_data['scale_f'] = scale_f
meta_data['scale_t'] = scale_t
meta_data['inter'] = inter
meta_data['dilation_fac'] = dilation_fac
meta_data['edit_operation'] = self.edit_operation
uuid = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
os.makedirs(f'{save_dir}/{uuid}')
with open(f'{save_dir}/{uuid}/meta.json', "w") as outfile:
json.dump(meta_data, outfile)
cv2.imwrite(f'{save_dir}/{uuid}/input.png', self.input_img[:,:,::-1])
cv2.imwrite(f'{save_dir}/{uuid}/ref.png', self.ref_img[:,:,::-1])
if self.ref_mask is not None:
cv2.imwrite(f'{save_dir}/{uuid}/ref_mask.png', self.ref_mask.cpu().squeeze().numpy() * 200)
for i in range(len(self.results)):
cv2.imwrite(f'{save_dir}/{uuid}/edit{i}.png', self.results[i][:,:,::-1])
if self.edit_operation == 'add_obj' or free_form_obj_var:
cv2.imwrite(f'{save_dir}/{uuid}/input_mask.png', input_mask['mask'] * 200)
else:
cv2.imwrite(f'{save_dir}/{uuid}/input_mask.png', self.input_mask.cpu().squeeze().numpy() * 200)
print("Saved results at", f'{save_dir}/{uuid}')
def process(self, input_mask, ref_mask, prompt, a_prompt, n_prompt,
num_samples, ddim_steps, guess_mode, strength,
scale_s, scale_f, scale_t, seed, eta, dilation_fac=1,masking=True,whole_ref=False,inter=1,
free_form_obj_var=False, ignore_structure=False):
print(prompt)
if free_form_obj_var:
print("Free form")
structure, appearance_conc, appearance_ca, mask, img = self._edit_obj_var(input_mask, ignore_structure)
else:
structure, appearance_conc, appearance_ca, mask, img = self._edit(input_mask, ref_mask, dilation_fac=dilation_fac,
whole_ref=whole_ref, inter=inter)
input_pmask = torch.nn.functional.interpolate(self.input_pmask.cuda().unsqueeze(0).unsqueeze(1).float(), (self.H//8, self.W//8))
input_pmask = input_pmask.to(memory_format=torch.contiguous_format)
if isinstance(appearance_ca, list):
null_appearance_ca = [torch.zeros(a.shape).cuda() for a in appearance_ca]
null_appearance_conc = torch.zeros(appearance_conc.shape).cuda()
null_structure = torch.zeros(structure.shape).cuda() - 1
null_control = [torch.cat([null_structure, napp, input_pmask * 0], dim=1) for napp in null_appearance_ca]
structure_control = [torch.cat([structure, napp, input_pmask], dim=1) for napp in null_appearance_ca]
full_control = [torch.cat([structure, napp, input_pmask], dim=1) for napp in appearance_ca]
null_control.append(torch.cat([null_structure, null_appearance_conc, null_structure * 0], dim=1))
structure_control.append(torch.cat([structure, null_appearance_conc, null_structure], dim=1))
full_control.append(torch.cat([structure, appearance_conc, input_pmask], dim=1))
null_control = [torch.cat([nc for _ in range(num_samples)], dim=0) for nc in null_control]
structure_control = [torch.cat([sc for _ in range(num_samples)], dim=0) for sc in structure_control]
full_control = [torch.cat([fc for _ in range(num_samples)], dim=0) for fc in full_control]
#Masking for local edit
if not masking:
mask, x0 = None, None
else:
x0 = model.encode_first_stage(img)
x0 = x0.sample() if isinstance(x0, DiagonalGaussianDistribution) else x0 # todo: check if we can set random number
x0 = x0 * model.scale_factor
mask = 1 - torch.tensor(mask).unsqueeze(0).unsqueeze(1).cuda()
mask = torch.nn.functional.interpolate(mask.float(), x0.shape[2:]).float()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
scale = [scale_s, scale_f, scale_t]
print(scale)
if save_memory:
model.low_vram_shift(is_diffusing=False)
uc_cross = model.get_learned_conditioning([n_prompt] * num_samples)
c_cross = model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)
cond = {"c_concat": [null_control], "c_crossattn": [c_cross]}
un_cond = {"c_concat": None if guess_mode else [null_control], "c_crossattn": [uc_cross]}
un_cond_struct = {"c_concat": None if guess_mode else [structure_control], "c_crossattn": [uc_cross]}
un_cond_struct_app = {"c_concat": None if guess_mode else [full_control], "c_crossattn": [uc_cross]}
shape = (4, self.H // 8, self.W // 8)
if save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, _ = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale, mask=mask, x0=x0,
unconditional_conditioning=[un_cond, un_cond_struct, un_cond_struct_app ])
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = (model.decode_first_stage(samples) + 1) * 127.5
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
self.results = results
return [] + results |