File size: 3,576 Bytes
edb0494
6405936
 
 
 
 
 
edb0494
6405936
 
edb0494
6405936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de6c5c
6405936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97567b1
 
 
 
 
 
 
6405936
 
a99ac61
6405936
 
97567b1
6405936
97567b1
 
6405936
 
 
 
 
 
97567b1
6405936
 
 
 
 
 
 
 
 
97567b1
 
 
 
 
 
6405936
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

prompt = "high quality"
(
    prompt_embeds,
    negative_prompt_embeds,
    pooled_prompt_embeds,
    negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)


@spaces.GPU(duration=16)
def fill_image(image, model_selection):
    source = image["background"]
    mask = image["layers"][0]

    alpha_channel = mask.split()[3]
    binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
    cnet_image = source.copy()
    cnet_image.paste(0, (0, 0), binary_mask)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
    ):
        yield image, cnet_image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), binary_mask)

    yield source, cnet_image


def clear_result():
    return gr.update(value=None)


css = """
.gradio-container {
    width: 1024px !important;
}
"""


title = """<h1 align="center">Diffusers Image Fill</h1>
<div align="center">Draw the mask over the subject you want to erase or change.</div>
<div align="center">This space is a PoC made for the guide <a href='https://huggingface.co/blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div>
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(title)

    run_button = gr.Button("Generate")

    with gr.Row():
        input_image = gr.ImageMask(
            type="pil",
            label="Input Image",
            crop_size=(1024, 1024),
            canvas_size=(1024, 1024),
            layers=False,
            sources=["upload"],
        )

        result = ImageSlider(
            interactive=False,
            label="Generated Image",
        )

    model_selection = gr.Dropdown(
        choices=list(MODELS.keys()),
        value="RealVisXL V5.0 Lightning",
        label="Model",
    )

    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=fill_image,
        inputs=[input_image, model_selection],
        outputs=result,
    )


demo.launch(share=False)