Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,308 Bytes
3491fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
import numpy as np
import qrcode
from qrcode.image.styles.moduledrawers import (GappedSquareModuleDrawer,
CircleModuleDrawer,
RoundedModuleDrawer,
VerticalBarsDrawer,
HorizontalBarsDrawer)
from qrcode.image.styledpil import StyledPilImage
from qrcode.image.styles.colormasks import SolidFillColorMask
from PIL import Image
import torch
import torch.nn.functional as F
class QRBase:
def __init__(self):
self.text = ""
self.fill = None
self.back = None
FUNCTION = "generate_qr"
CATEGORY = "ComfyQR"
def _get_error_correction_constant(self, error_correction_string):
if error_correction_string == "Low":
return qrcode.constants.ERROR_CORRECT_L
if error_correction_string == "Medium":
return qrcode.constants.ERROR_CORRECT_M
if error_correction_string == "Quartile":
return qrcode.constants.ERROR_CORRECT_Q
return qrcode.constants.ERROR_CORRECT_H
def _img_to_tensor(self, img):
out_image = np.array(img, dtype=np.uint8).astype(np.float32) / 255
return torch.from_numpy(out_image).unsqueeze(0)
def _make_qr(self, qr, fill_hexcolor, back_hexcolor, module_drawer):
self.fill = self._parse_hexcolor_string(fill_hexcolor, "fill_hexcolor")
self.back = self._parse_hexcolor_string(back_hexcolor, "back_hexcolor")
qr.make(fit=True)
if module_drawer == "Square":
# Keeps using Square QR generation the old way for faster speeds.
return qr.make_image(fill_color=self.fill, back_color=self.back)
color_mask = SolidFillColorMask(back_color=self.back,
front_color=self.fill)
module_drawing_method = self._select_module_drawer(module_drawer)
return qr.make_image(image_factory=StyledPilImage,
color_mask=color_mask,
module_drawer=module_drawing_method)
def _parse_hexcolor_string(self, s, parameter):
if s.startswith("#"):
s = s[1:]
if len(s) == 3:
rgb = (c + c for c in s)
elif len(s) == 6:
rgb = (s[i] + s[i+1] for i in range(0, 6, 2))
else:
raise ValueError(f"{parameter} must be 3 or 6 characters long")
try:
return tuple(int(channel, 16) for channel in rgb)
except ValueError:
raise ValueError(f"{parameter} contains invalid hexadecimal "
f"characters")
def _validate_qr_size(self, size, max_size):
if size > max_size:
raise RuntimeError(f"QR dimensions of {size} exceed max size of "
f"{max_size}.")
def _select_module_drawer(self, module_drawer_string):
"""Square is not included in the results, for a speed optimization
applying color masks. Current version of python-qr code suffers a
slowdown when using custom colors combined with custom module drawers.
By bypassing square QRs, non standard colors will load faster."""
if module_drawer_string == "Gapped square":
return GappedSquareModuleDrawer()
if module_drawer_string == "Circle":
return CircleModuleDrawer()
if module_drawer_string == "Rounded":
return RoundedModuleDrawer()
if module_drawer_string == "Vertical bars":
return VerticalBarsDrawer()
if module_drawer_string == "Horizontal bars":
return HorizontalBarsDrawer()
raise ValueError(f"Module drawing method of {module_drawer_string} "
f"not supported")
def update_text(self, protocol, text):
"""This function takes input from a text box and a chosen internet
protocol and stores a full address within an instance variable.
Backslashes will invalidate text box input and this acts as a
workaround to be able to use them when required in QR strings.
Args:
protocol: A categorical variable of one of the available internet
protocols.
text: The input from the text box.
"""
if protocol == "Https":
prefix = "https://"
elif protocol == "Http":
prefix = "http://"
elif protocol == "None":
prefix = ""
self.text = prefix + text
class QRByImageSize(QRBase):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"protocol": (["Http", "Https", "None"], {"default": "Https"}),
"text": ("STRING", {"multiline": True}),
"image_size": ("INT", {"default": 512,
"min": 64,
"max": 4096,
"step": 64}),
"fill_hexcolor": ("STRING", {"multiline": False,
"default": "#000000"}),
"back_hexcolor": ("STRING", {"multiline": False,
"default": "#FFFFFF"}),
"error_correction": (["Low", "Medium", "Quartile", "High"],
{"default": "High"}),
"border": ("INT", {"default": 1,
"min": 0,
"max": 100,
"step": 1}),
"resampling": (["Bicubic",
"Bilinear",
"Box",
"Hamming",
"Lanczos",
"Nearest"
], {"default": "Nearest"}),
"module_drawer": (["Square",
"Gapped square",
"Circle",
"Rounded",
"Vertical bars",
"Horizontal bars"
], {"default": "Square"})
},
}
RETURN_TYPES = ("IMAGE", "INT")
RETURN_NAMES = ("QR_CODE", "QR_VERSION")
def _select_resampling_method(self, resampling_string):
if resampling_string == "Nearest":
return Image.NEAREST
if resampling_string == "Bicubic":
return Image.BICUBIC
if resampling_string == "Bilinear":
return Image.BILINEAR
if resampling_string == "Lanczos":
return Image.LANCZOS
if resampling_string == "Box":
return Image.BOX
if resampling_string == "Hamming":
return Image.HAMMING
raise ValueError(f"Resampling method of {resampling_string} not "
f"supported")
def generate_qr(
self,
protocol,
text,
image_size,
fill_hexcolor,
back_hexcolor,
error_correction,
border,
resampling,
module_drawer
):
resampling_method = self._select_resampling_method(resampling)
error_level = self._get_error_correction_constant(error_correction)
self.update_text(protocol, text)
qr = qrcode.QRCode(
error_correction=error_level,
box_size=16,
border=border)
qr.add_data(self.text)
img = self._make_qr(qr, fill_hexcolor, back_hexcolor, module_drawer)
img = img.resize((image_size, image_size), resample=resampling_method)
return (self._img_to_tensor(img), qr.version)
class QRByModuleSize(QRBase):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"protocol": (["Http", "Https", "None"], {"default": "Https"}),
"text": ("STRING", {"multiline": True}),
"module_size": ("INT", {"default": 16,
"min": 1,
"max": 64,
"step": 1}),
"max_image_size": ("INT", {"default": 512,
"min": 64,
"max": 4096,
"step": 64}),
"fill_hexcolor": ("STRING", {"multiline": False,
"default": "#000000"}),
"back_hexcolor": ("STRING", {"multiline": False,
"default": "#FFFFFF"}),
"error_correction": (["Low", "Medium", "Quartile", "High"],
{"default": "High"}),
"border": ("INT", {"default": 1,
"min": 0,
"max": 100,
"step": 1}),
"module_drawer": (["Square",
"Gapped square",
"Circle",
"Rounded",
"Vertical bars",
"Horizontal bars"
], {"default": "Square"})
},
}
RETURN_TYPES = ("IMAGE", "INT", "INT")
RETURN_NAMES = ("QR_CODE", "QR_VERSION", "IMAGE_SIZE")
def generate_qr(
self,
protocol,
text,
module_size,
max_image_size,
fill_hexcolor,
back_hexcolor,
error_correction,
border,
module_drawer
):
self.update_text(protocol, text)
error_level = self._get_error_correction_constant(error_correction)
qr = qrcode.QRCode(
error_correction=error_level,
box_size=module_size,
border=border)
qr.add_data(self.text)
img = self._make_qr(qr, fill_hexcolor, back_hexcolor, module_drawer)
self._validate_qr_size(img.pixel_size, max_image_size)
return (self._img_to_tensor(img), qr.version, img.pixel_size)
class QRByModuleSizeSplitFunctionPatterns(QRBase):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"protocol": (["Http", "Https", "None"], {"default": "Https"}),
"text": ("STRING", {"multiline": True}),
"module_size": ("INT", {"default": 16,
"min": 1,
"max": 64,
"step": 1}),
"max_image_size": ("INT", {"default": 512,
"min": 64,
"max": 4096,
"step": 64}),
"fill_hexcolor": ("STRING", {"multiline": False,
"default": "#000000"}),
"back_hexcolor": ("STRING", {"multiline": False,
"default": "#FFFFFF"}),
"error_correction": (["Low", "Medium", "Quartile", "High"],
{"default": "High"}),
"border": ("INT", {"default": 1,
"min": 0,
"max": 100,
"step": 1}),
"module_drawer": (["Square",
"Gapped square",
"Circle",
"Rounded",
"Vertical bars",
"Horizontal bars"
], {"default": "Square"})
},
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "INT", "INT")
RETURN_NAMES = ("QR_CODE",
"MODULE_LAYER",
"FINDER_LAYER",
"FINDER_MASK",
"QR_VERSION",
"IMAGE_SIZE")
def _generate_finder_pattern_ranges(self, module_size, border_size):
outer = module_size * border_size
inner = 7 * module_size + outer
# Alternate behavior is required to prevent bugs from 0 border_size.
far_outer = -outer if border_size else None
return [
(outer, inner, outer, inner),
(outer, inner, -inner, far_outer),
(-inner, far_outer, outer, inner)
]
def _generate_finder_pattern_mask(self,
pixel_size,
module_size,
border_size):
mask = np.zeros((pixel_size, pixel_size), dtype=bool)
for (x_min,
x_max,
y_min,
y_max) in self._generate_finder_pattern_ranges(module_size,
border_size):
mask[y_min:y_max, x_min:x_max] = True
return mask
def _apply_fill_to_mask(self, img, mask):
array = np.array(img).copy()
indices = np.nonzero(mask)
array[indices[0], indices[1], :] = self.back
return Image.fromarray(array)
def _mask_to_tensor(self, mask):
out_image = mask.astype(np.float32)
return torch.from_numpy(out_image).unsqueeze(0)
def generate_qr(
self,
protocol,
text,
module_size,
max_image_size,
fill_hexcolor,
back_hexcolor,
error_correction,
border,
module_drawer
):
self.update_text(protocol, text)
error_level = self._get_error_correction_constant(error_correction)
qr = qrcode.QRCode(
error_correction=error_level,
box_size=module_size,
border=border)
qr.add_data(self.text)
img = self._make_qr(qr, fill_hexcolor, back_hexcolor, module_drawer)
pixel_size = img.pixel_size
self._validate_qr_size(pixel_size, max_image_size)
mask = self._generate_finder_pattern_mask(pixel_size,
module_size,
border)
module_image = self._apply_fill_to_mask(img, mask)
function_image = self._apply_fill_to_mask(img, ~mask)
return (
self._img_to_tensor(img),
self._img_to_tensor(module_image),
self._img_to_tensor(function_image),
self._mask_to_tensor(mask),
qr.version,
pixel_size,
)
class QRErrorMasker:
def __init__(self):
self.module_size = None
self.canvas_shape = None
self.qr_bounds = None
FUNCTION = "find_qr_errors"
CATEGORY = "ComfyQR"
RETURN_TYPES = ("MASK", "FLOAT", "FLOAT", "FLOAT")
RETURN_NAMES = ("QR_ERROR_MASK", "PERCENT_ERROR", "CORRELATION", "RMSE")
OUTPUT_IS_LIST = (False, True, True, True)
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"source_qr": ("IMAGE",),
"modified_qr": ("IMAGE",),
"module_size": ("INT", {"default": 16,
"min": 1,
"max": 64,
"step": 1}),
"grayscale_method": (["mean", "luminance"],
{"default": "luminance"}),
"aggregate_method": (["mean",], {"default": "mean"}),
"evaluate": (["full_qr", "module_pattern", "finder_pattern"],
{"default": "module_pattern"}),
"error_difficulty": ("FLOAT", {"default": 0,
"min": 0,
"max": 1,
"step": .01}),
"inverted_pattern": ("BOOLEAN", {"default": False}),
"gamma": ("FLOAT", {"default": 2.2,
"min": .1,
"max": 2.8,
"step": .1}),
},
}
def _get_qr_bounds(self, tensor, invert):
module_color = 1.0 if invert else 0.0
module_pixels = (tensor == module_color)
indices = torch.nonzero(module_pixels, as_tuple=True)
# The viewer patterns will guarentee a module pixel in the upper left
# The bottom right does not have that guarentee so max is used.
return (indices[0][0],
indices[0].max() + 1,
indices[1][0], indices[1].max() + 1)
def _extract_pattern_from_bounds(self, tensor):
return tensor[self.qr_bounds[0]: self.qr_bounds[1],
self.qr_bounds[2]: self.qr_bounds[3]]
def _trim_to_qr_area(self, source_qr, modified_qr, inverted_pattern):
self.qr_bounds = self._get_qr_bounds(source_qr, inverted_pattern)
self._check_bounds_and_module_size()
source_qr = self._extract_pattern_from_bounds(source_qr)
modified_qr = self._extract_pattern_from_bounds(modified_qr)
return source_qr, modified_qr
def _reshape_tensor_to_modules(self, tensor):
if len(tensor.shape) != 2:
raise RuntimeError("Module reshaping requires a 2 dimensional "
"array.")
length = tensor.shape[0] // self.module_size
reshaped_tensor = tensor.view(length,
self.module_size,
length,
self.module_size)
rehaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous()
return rehaped_tensor.view(length, length, self.module_size ** 2)
def _check_bounds_and_module_size(self):
height = self.qr_bounds[1] - self.qr_bounds[0]
width = self.qr_bounds[3] - self.qr_bounds[2]
color_warning = "Make sure that qr_fill and back colors have exact "
"#FFFFFFF and #000000 values (and that module color values do not "
"occur outside the QR) and invert is set correctly."
if width != height:
raise RuntimeError(f"Source QR dimensions are {width} x {height}. "
f"They must be a perfect square. "
f"{color_warning}")
if width % self.module_size:
raise RuntimeError(f"QR width of {width} does not fit module_size "
f"of {self.module_size}. It must be perfectly "
f"divisible. {color_warning}")
def _check_equal_shape(self, source_qr, modified_qr):
if source_qr.shape != modified_qr.shape:
raise ValueError("Source and modified QR must have the same batch "
"size and dimensions.")
def _squeeze_by_mean(self, tensor):
return torch.mean(tensor, dim=-1)
def _gamma_expansion(self, tensor, gamma):
if gamma == 1:
return tensor
if gamma == 2.2:
return torch.where(tensor <= 0.04045,
tensor / 12.92,
(tensor + 0.055) / 1.055) ** 2.4
return tensor ** gamma
def _gamma_compression(self, tensor, gamma):
if gamma == 1:
return tensor
if gamma == 2.2:
return torch.where(tensor <= .0031308,
tensor * 12.92,
1.055 * tensor ** (1/2.4) - 0.055)
return tensor ** (1/gamma)
def _grayscale_by_luminance(self, tensor, gamma):
weights = torch.tensor([0.2125, 0.7154, 0.0721], dtype=torch.float32)
tensor = self._gamma_expansion(tensor, gamma)
tensor = tensor @ weights
if gamma != 1:
tensor = tensor ** gamma
return self._gamma_compression(tensor, gamma)
def _squeeze_to_modules(self, tensor, method):
tensor = self._reshape_tensor_to_modules(tensor)
if method == "mean":
return self._squeeze_by_mean(tensor)
raise RuntimeError("Module aggregation currently only supports the "
"mean.")
def _reduce_to_modules(
self,
source_qr,
modified_qr,
module_size,
grayscale_method,
aggregate_method,
inverted_pattern,
gamma
):
self.module_size = module_size
self.canvas_shape = (source_qr.shape[0], source_qr.shape[1])
# Processed first for simplified indexing of QR bounds.
source_qr = self._squeeze_by_mean(source_qr)
source_qr, modified_qr = self._trim_to_qr_area(source_qr,
modified_qr,
inverted_pattern
)
if grayscale_method == "mean":
modified_qr = self._squeeze_by_mean(modified_qr)
elif grayscale_method == "luminance":
modified_qr = self._grayscale_by_luminance(modified_qr, gamma)
else:
raise ValueError("Currently only mean is supported for rgb to "
"grayscale conversion.")
source_qr = torch.round(self._squeeze_to_modules(source_qr, "mean"))
modified_qr = self._squeeze_to_modules(modified_qr, aggregate_method)
return source_qr, modified_qr
def _create_finder_pattern_mask(self, width, inverted):
mask = torch.zeros((width, width), dtype=torch.bool)
# When borders are trimmed and QR code has module size of 1, results
# are consistent.
finder_coords = [[0, 7, 0, 7], [0, 7, -7, None], [-7, None, 0, 7]]
for x_min, x_max, y_min, y_max in finder_coords:
mask[y_min:y_max, x_min:x_max] = True
return ~mask if inverted else mask
def _create_qr_mask(self, tensor, evaluate):
if evaluate == "module_pattern":
return self._create_finder_pattern_mask(tensor, True)
if evaluate == "finder_pattern":
return self._create_finder_pattern_mask(tensor, False)
return None
def _bin_tensor_to_threshold(self, tensor, contrast_difficulty):
tensor = tensor.clone()
threshold = contrast_difficulty / 2
# Since we are only interested in value matches and there is a clear
# stable dividing line of .5, bringing in the other array is
# unneccessary and the binning process can be simplified.
bin_condition = (tensor + threshold <= .5) & (tensor != .5)
tensor[bin_condition] = 0.0
bin_condition = (tensor - threshold >= .5) & (tensor != .5)
tensor[bin_condition] = 1.0
return tensor
def _replace_qr_to_canvas(self, tensor):
length = tensor.shape[0] * self.module_size
bounds = self.qr_bounds
tensor = F.interpolate(tensor.unsqueeze(0).unsqueeze(0),
size=(length, length),
mode='nearest')
canvas = torch.zeros(self.canvas_shape, dtype=torch.float32)
canvas[bounds[0]:bounds[1], bounds[2]:bounds[3]] = tensor.squeeze()
return canvas
def _compare_modules(
self,
source_qr,
modified_qr,
mask,
error_difficulty
):
modified_qr = self._bin_tensor_to_threshold(modified_qr,
error_difficulty)
error = source_qr != modified_qr
percent_error = error[mask].sum().item() / error[mask].numel()
if mask is not None:
error[~mask] = False
return (self._replace_qr_to_canvas((error).to(torch.float32)),
percent_error)
def _qr_correlation(self, source_qr, modified_qr, mask):
source_qr = source_qr[mask].numpy().reshape((-1))
modified_qr = modified_qr[mask].numpy().reshape((-1))
return np.corrcoef(source_qr, modified_qr)[0, 1]
def _qr_rmse(self, source_qr, modified_qr, mask):
diff = source_qr[mask].numpy() - modified_qr[mask].numpy()
return np.sqrt((diff ** 2).mean())
def find_qr_errors(
self,
source_qr,
modified_qr,
module_size,
grayscale_method,
aggregate_method,
evaluate,
error_difficulty,
inverted_pattern,
gamma,
):
self._check_equal_shape(source_qr, modified_qr)
error_masks, error_percents, correlations, rmses = [], [], [], []
for i in range(source_qr.shape[0]):
qr_s, qr_m = source_qr[i], modified_qr[i]
qr_s, qr_m = self._reduce_to_modules(qr_s,
qr_m,
module_size,
grayscale_method,
aggregate_method,
inverted_pattern,
gamma
)
mask = self._create_qr_mask(qr_s.shape[0], evaluate)
error_mask, percent_error = self._compare_modules(qr_s,
qr_m,
mask,
error_difficulty
)
correlation = self._qr_correlation(qr_s, qr_m, mask)
rmse = self._qr_rmse(qr_s, qr_m, mask)
error_masks.append(error_mask)
error_percents.append(percent_error)
correlations.append(correlation)
rmses.append(rmse)
error_masks = torch.stack(error_masks, dim=0)
return (error_masks, error_percents, correlations, rmses)
NODE_CLASS_MAPPINGS = {
"comfy-qr-by-module-size": QRByModuleSize,
"comfy-qr-by-image-size": QRByImageSize,
"comfy-qr-by-module-split":
QRByModuleSizeSplitFunctionPatterns,
"comfy-qr-mask_errors": QRErrorMasker,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"comfy-qr-by-module-size": "QR Code",
"comfy-qr-by-image-size": "QR Code (Conformed "
"to Image Size)",
"comfy-qr-by-module-split": "QR Code (Split)",
"comfy-qr-mask_errors": "Mask QR Errors",
}
|