File size: 9,362 Bytes
d4bea00
 
 
 
 
 
 
 
 
 
90d6276
d4bea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab1083
3086c96
3ab1083
90d6276
 
 
 
 
d4bea00
 
3ab1083
90d6276
 
d4bea00
 
 
 
 
 
 
 
 
90d6276
d4bea00
 
 
 
90d6276
d4bea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab1083
d4bea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import requests
from datetime import datetime, timedelta
from pytz import timezone
from io import BytesIO
import time
import folium
import base64
import pandas as pd
import numpy as np
from PIL import Image, ImageFilter, ImageEnhance

st.set_page_config(layout="wide", page_title="Rainfall Data Dashboard")

HONG_KONG_TZ = timezone('Asia/Hong_Kong')
RADAR_BASE_URL = "https://www.hko.gov.hk/wxinfo/radars/rad_064_png/2d064nradar_{}.jpg"
API_URL = "https://data.weather.gov.hk/weatherAPI/opendata/weather.php?dataType=rhrread&lang=en"
COLORS_TO_EXTRACT = [
    "#ed00f0", "#c3006a", "#dc0201", "#f00000", "#ed8202",
    "#eeb000", "#fada04", "#e1cf00", "#8fff00", "#01f908",
    "#01f808", "#00d002", "#01a835", "#008448", "#3b96ff",
    "#008ff5", "#00c8fb"
]
COLORS_TO_EXTRACT_RGB = [tuple(int(color[i:i+2], 16) for i in (1, 3, 5)) for color in COLORS_TO_EXTRACT]

def get_nearest_6_minute_interval(time):
    return time.replace(minute=(time.minute // 6) * 6, second=0, microsecond=0)

def get_backward_6_minute_intervals(current_time, hours=3):
    intervals = []
    interval_time = get_nearest_6_minute_interval(current_time)
    end_time = current_time - timedelta(hours=hours)
    while interval_time >= end_time:
        intervals.append(interval_time)
        interval_time -= timedelta(minutes=6)
    return intervals

def fetch_radar_image(timestamp):
    url = RADAR_BASE_URL.format(timestamp.strftime('%Y%m%d%H%M'))
    response = requests.get(url)
    return Image.open(BytesIO(response.content)) if response.status_code == 200 else None

def fetch_radar_image_with_rollback(timestamp):
    for i in range(31):  # 30 steps of 6 minutes = 3 hours
        image = fetch_radar_image(timestamp - timedelta(minutes=6 * i))
        if image:
            return image, timestamp - timedelta(minutes=6 * i)
    return None, None

def image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()

def extract_color_pixels(img_array, colors, tolerance=30):
    return np.any([np.all(np.abs(img_array - color) <= tolerance, axis=-1) for color in colors], axis=0)

def filter_image_by_color(image, colors_to_extract_rgb):
    img_array = np.array(image.convert("RGBA"))
    color_mask = extract_color_pixels(img_array[..., :3], colors_to_extract_rgb)
    img_array[~color_mask] = [255, 255, 255, 0]
    return Image.fromarray(img_array)

def smooth_image(image):
    return image.filter(ImageFilter.GaussianBlur(radius=1))

def enhance_contrast(image, factor=1.5):
    enhancer = ImageEnhance.Contrast(image)
    enhanced_image = enhancer.enhance(factor)
    return enhanced_image

def create_map_with_radar_tile(image):
    filtered_image = filter_image_by_color(image, COLORS_TO_EXTRACT_RGB)
    smoothed_image = smooth_image(filtered_image)
    enhanced_image = enhance_contrast(smoothed_image, factor=1.5)

    m = folium.Map(location=[22.364, 114.148], zoom_start=10, min_zoom=10, max_zoom=19,
                   tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/imagery/wgs84/{z}/{x}/{y}.png',
                   attr="Map information from Lands Department", control_scale=True, name="Basemap")
    folium.TileLayer(
        tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/label/hk/en/wgs84/{z}/{x}/{y}.png',
        attr="Map information from Lands Department",
        overlay=True,
        name="Labels"
    ).add_to(m)
    img_url = f"data:image/png;base64,{image_to_base64(enhanced_image)}"
    folium.raster_layers.ImageOverlay(
        image=img_url,
        name="HKO Radar Image",
        bounds=[[22.893, 113.538], [21.716, 115.362]],
        opacity=0.95,
        interactive=False,
        cross_origin=False,
        zindex=1,
    ).add_to(m)
    folium.LayerControl().add_to(m)
    return m._repr_html_()

def fetch_and_process_rainfall_data():
    response = requests.get(API_URL)
    data = response.json()
    df = pd.DataFrame(data['rainfall']['data'])
    df['max'] = pd.to_numeric(df['max'], errors='coerce')
    return df

# Main app
current_time_hkt = datetime.utcnow().replace(tzinfo=timezone('UTC')).astimezone(HONG_KONG_TZ)
time_intervals = get_backward_6_minute_intervals(current_time_hkt)
default_time = get_nearest_6_minute_interval(current_time_hkt)

col1, col2 = st.columns([2.2, 1])

with col1:
    st.subheader('Georeferenced Radar Image (64 km)')
    slider = st.empty()
    selected_time = slider.slider(
        "Select Time:",
        min_value=min(time_intervals),
        max_value=max(time_intervals),
        value=default_time,
        format="YYYY-MM-DD HH:mm",
        step=timedelta(minutes=6),
        key="initial_time_slider"
    )

    map_placeholder = st.empty()
    info_placeholder = st.empty()

    cola1, cola2 = st.columns([1, 3])

    with cola1:
        play = st.button("3-hour Sequence")

    with cola2:
        st.markdown(f"""
            <style>
            .color-bar {{
                height: 20px;
                width: 100%;
                background: linear-gradient(to right, {', '.join(COLORS_TO_EXTRACT)});
            }}
            .color-labels {{
                display: flex;
                justify-content: space-between;
                font-size: 10px;
            }}
            </style>
            <div class="color-labels">Rainfall rate (mm/h)</div>
            <div class="color-bar"></div>
            <div class="color-labels">{' '.join([f'<span>{label}</span>' for label in ['>300', '200-300', '150-200', '100-150', '75-100', '50-75', '30-50', '15-30', '10-15', '7-10', '5-7', '3-5', '2-3', '1-2', '0.50-1', '0.15-0.50']])}</div>
            """, unsafe_allow_html=True)

    if play:
        for i, interval in enumerate(reversed(time_intervals)):
            image, actual_time = fetch_radar_image_with_rollback(interval)
            if image:
                # Update slider with the actual time of the image
                slider.slider(
                    "Select Time:",
                    min_value=min(time_intervals),
                    max_value=max(time_intervals),
                    value=actual_time,
                    format="YYYY-MM-DD HH:mm",
                    step=timedelta(minutes=6),
                    key=f"time_slider_{i}"
                )

                # Create and display the map
                map_html = create_map_with_radar_tile(image)
                map_placeholder.empty()
                map_placeholder = st.components.v1.html(map_html,height=750)

                if actual_time != interval:
                    info_placeholder.warning(
                        f"Showing the nearest available image from {actual_time.strftime('%Y-%m-%d %H:%M')}.")
                else:
                    info_placeholder.empty()
                time.sleep(0.01)
            else:
                info_placeholder.error(f"Could not fetch any radar image for {interval.strftime('%Y-%m-%d %H:%M')}")
    else:
        # Fetch the radar image with rollback for the selected time
        image, actual_time = fetch_radar_image_with_rollback(selected_time)

        if image:
            # Create and display the map
            map_html = create_map_with_radar_tile(image)
            map_placeholder.empty()
            map_placeholder = st.components.v1.html(map_html, height=750)

            if actual_time != selected_time:
                info_placeholder.warning(
                    f"Showing the nearest available image from {actual_time.strftime('%Y-%m-%d %H:%M')}.")
                # Update slider to match the actual image time
                slider.slider(
                    "Select Time:",
                    min_value=min(time_intervals),
                    max_value=max(time_intervals),
                    value=actual_time,
                    format="YYYY-MM-DD HH:mm",
                    step=timedelta(minutes=6),
                    key="adjusted_time_slider"
                )
            else:
                info_placeholder.empty()
        else:
            info_placeholder.error(
                f"Could not fetch any radar image within the last 3 hours of {selected_time.strftime('%Y-%m-%d %H:%M')}")

with col2:
    df = fetch_and_process_rainfall_data()
    areas_with_rainfall = df[df['max'] > 0]['place'].tolist()
    areas_with_no_rainfall = df[df['max'] == 0]['place'].tolist()

    st.caption('The following is the past hour rainfall from HKO Automatic Weather Station, updated hourly.')

    col_1, col_2 = st.columns(2)

    st.markdown(
        """
    <style>
    [data-testid="stMetricValue"] {
        font-size: 26px;
    }
    </style>
    """,
        unsafe_allow_html=True,
    )

    with col_1:
        st.metric("Average Rainfall", f"{df['max'].mean():.2f} mm")
        st.metric("Maximum Rainfall", f"{df['max'].max()} mm")

    with col_2:
        st.metric("Areas with Rainfall", f"{len(areas_with_rainfall)}")
        st.metric("Areas with No Rainfall", f"{len(areas_with_no_rainfall)}")

    st.dataframe(df.sort_values(by='max', ascending=False)[['place', 'max']], use_container_width=True, height=480)

# JavaScript for auto-reloading every 5 minutes
st.markdown(
    """
    <script>
    function reloadPage() {
        window.location.reload();
    }
    setTimeout(reloadPage, 100000); 
    </script>
    """,
    unsafe_allow_html=True
)