Spaces:
Runtime error
Runtime error
File size: 9,362 Bytes
d4bea00 90d6276 d4bea00 3ab1083 3086c96 3ab1083 90d6276 d4bea00 3ab1083 90d6276 d4bea00 90d6276 d4bea00 90d6276 d4bea00 3ab1083 d4bea00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import streamlit as st
import requests
from datetime import datetime, timedelta
from pytz import timezone
from io import BytesIO
import time
import folium
import base64
import pandas as pd
import numpy as np
from PIL import Image, ImageFilter, ImageEnhance
st.set_page_config(layout="wide", page_title="Rainfall Data Dashboard")
HONG_KONG_TZ = timezone('Asia/Hong_Kong')
RADAR_BASE_URL = "https://www.hko.gov.hk/wxinfo/radars/rad_064_png/2d064nradar_{}.jpg"
API_URL = "https://data.weather.gov.hk/weatherAPI/opendata/weather.php?dataType=rhrread&lang=en"
COLORS_TO_EXTRACT = [
"#ed00f0", "#c3006a", "#dc0201", "#f00000", "#ed8202",
"#eeb000", "#fada04", "#e1cf00", "#8fff00", "#01f908",
"#01f808", "#00d002", "#01a835", "#008448", "#3b96ff",
"#008ff5", "#00c8fb"
]
COLORS_TO_EXTRACT_RGB = [tuple(int(color[i:i+2], 16) for i in (1, 3, 5)) for color in COLORS_TO_EXTRACT]
def get_nearest_6_minute_interval(time):
return time.replace(minute=(time.minute // 6) * 6, second=0, microsecond=0)
def get_backward_6_minute_intervals(current_time, hours=3):
intervals = []
interval_time = get_nearest_6_minute_interval(current_time)
end_time = current_time - timedelta(hours=hours)
while interval_time >= end_time:
intervals.append(interval_time)
interval_time -= timedelta(minutes=6)
return intervals
def fetch_radar_image(timestamp):
url = RADAR_BASE_URL.format(timestamp.strftime('%Y%m%d%H%M'))
response = requests.get(url)
return Image.open(BytesIO(response.content)) if response.status_code == 200 else None
def fetch_radar_image_with_rollback(timestamp):
for i in range(31): # 30 steps of 6 minutes = 3 hours
image = fetch_radar_image(timestamp - timedelta(minutes=6 * i))
if image:
return image, timestamp - timedelta(minutes=6 * i)
return None, None
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def extract_color_pixels(img_array, colors, tolerance=30):
return np.any([np.all(np.abs(img_array - color) <= tolerance, axis=-1) for color in colors], axis=0)
def filter_image_by_color(image, colors_to_extract_rgb):
img_array = np.array(image.convert("RGBA"))
color_mask = extract_color_pixels(img_array[..., :3], colors_to_extract_rgb)
img_array[~color_mask] = [255, 255, 255, 0]
return Image.fromarray(img_array)
def smooth_image(image):
return image.filter(ImageFilter.GaussianBlur(radius=1))
def enhance_contrast(image, factor=1.5):
enhancer = ImageEnhance.Contrast(image)
enhanced_image = enhancer.enhance(factor)
return enhanced_image
def create_map_with_radar_tile(image):
filtered_image = filter_image_by_color(image, COLORS_TO_EXTRACT_RGB)
smoothed_image = smooth_image(filtered_image)
enhanced_image = enhance_contrast(smoothed_image, factor=1.5)
m = folium.Map(location=[22.364, 114.148], zoom_start=10, min_zoom=10, max_zoom=19,
tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/imagery/wgs84/{z}/{x}/{y}.png',
attr="Map information from Lands Department", control_scale=True, name="Basemap")
folium.TileLayer(
tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/label/hk/en/wgs84/{z}/{x}/{y}.png',
attr="Map information from Lands Department",
overlay=True,
name="Labels"
).add_to(m)
img_url = f"data:image/png;base64,{image_to_base64(enhanced_image)}"
folium.raster_layers.ImageOverlay(
image=img_url,
name="HKO Radar Image",
bounds=[[22.893, 113.538], [21.716, 115.362]],
opacity=0.95,
interactive=False,
cross_origin=False,
zindex=1,
).add_to(m)
folium.LayerControl().add_to(m)
return m._repr_html_()
def fetch_and_process_rainfall_data():
response = requests.get(API_URL)
data = response.json()
df = pd.DataFrame(data['rainfall']['data'])
df['max'] = pd.to_numeric(df['max'], errors='coerce')
return df
# Main app
current_time_hkt = datetime.utcnow().replace(tzinfo=timezone('UTC')).astimezone(HONG_KONG_TZ)
time_intervals = get_backward_6_minute_intervals(current_time_hkt)
default_time = get_nearest_6_minute_interval(current_time_hkt)
col1, col2 = st.columns([2.2, 1])
with col1:
st.subheader('Georeferenced Radar Image (64 km)')
slider = st.empty()
selected_time = slider.slider(
"Select Time:",
min_value=min(time_intervals),
max_value=max(time_intervals),
value=default_time,
format="YYYY-MM-DD HH:mm",
step=timedelta(minutes=6),
key="initial_time_slider"
)
map_placeholder = st.empty()
info_placeholder = st.empty()
cola1, cola2 = st.columns([1, 3])
with cola1:
play = st.button("3-hour Sequence")
with cola2:
st.markdown(f"""
<style>
.color-bar {{
height: 20px;
width: 100%;
background: linear-gradient(to right, {', '.join(COLORS_TO_EXTRACT)});
}}
.color-labels {{
display: flex;
justify-content: space-between;
font-size: 10px;
}}
</style>
<div class="color-labels">Rainfall rate (mm/h)</div>
<div class="color-bar"></div>
<div class="color-labels">{' '.join([f'<span>{label}</span>' for label in ['>300', '200-300', '150-200', '100-150', '75-100', '50-75', '30-50', '15-30', '10-15', '7-10', '5-7', '3-5', '2-3', '1-2', '0.50-1', '0.15-0.50']])}</div>
""", unsafe_allow_html=True)
if play:
for i, interval in enumerate(reversed(time_intervals)):
image, actual_time = fetch_radar_image_with_rollback(interval)
if image:
# Update slider with the actual time of the image
slider.slider(
"Select Time:",
min_value=min(time_intervals),
max_value=max(time_intervals),
value=actual_time,
format="YYYY-MM-DD HH:mm",
step=timedelta(minutes=6),
key=f"time_slider_{i}"
)
# Create and display the map
map_html = create_map_with_radar_tile(image)
map_placeholder.empty()
map_placeholder = st.components.v1.html(map_html,height=750)
if actual_time != interval:
info_placeholder.warning(
f"Showing the nearest available image from {actual_time.strftime('%Y-%m-%d %H:%M')}.")
else:
info_placeholder.empty()
time.sleep(0.01)
else:
info_placeholder.error(f"Could not fetch any radar image for {interval.strftime('%Y-%m-%d %H:%M')}")
else:
# Fetch the radar image with rollback for the selected time
image, actual_time = fetch_radar_image_with_rollback(selected_time)
if image:
# Create and display the map
map_html = create_map_with_radar_tile(image)
map_placeholder.empty()
map_placeholder = st.components.v1.html(map_html, height=750)
if actual_time != selected_time:
info_placeholder.warning(
f"Showing the nearest available image from {actual_time.strftime('%Y-%m-%d %H:%M')}.")
# Update slider to match the actual image time
slider.slider(
"Select Time:",
min_value=min(time_intervals),
max_value=max(time_intervals),
value=actual_time,
format="YYYY-MM-DD HH:mm",
step=timedelta(minutes=6),
key="adjusted_time_slider"
)
else:
info_placeholder.empty()
else:
info_placeholder.error(
f"Could not fetch any radar image within the last 3 hours of {selected_time.strftime('%Y-%m-%d %H:%M')}")
with col2:
df = fetch_and_process_rainfall_data()
areas_with_rainfall = df[df['max'] > 0]['place'].tolist()
areas_with_no_rainfall = df[df['max'] == 0]['place'].tolist()
st.caption('The following is the past hour rainfall from HKO Automatic Weather Station, updated hourly.')
col_1, col_2 = st.columns(2)
st.markdown(
"""
<style>
[data-testid="stMetricValue"] {
font-size: 26px;
}
</style>
""",
unsafe_allow_html=True,
)
with col_1:
st.metric("Average Rainfall", f"{df['max'].mean():.2f} mm")
st.metric("Maximum Rainfall", f"{df['max'].max()} mm")
with col_2:
st.metric("Areas with Rainfall", f"{len(areas_with_rainfall)}")
st.metric("Areas with No Rainfall", f"{len(areas_with_no_rainfall)}")
st.dataframe(df.sort_values(by='max', ascending=False)[['place', 'max']], use_container_width=True, height=480)
# JavaScript for auto-reloading every 5 minutes
st.markdown(
"""
<script>
function reloadPage() {
window.location.reload();
}
setTimeout(reloadPage, 100000);
</script>
""",
unsafe_allow_html=True
)
|