Spaces:
Runtime error
Runtime error
File size: 5,848 Bytes
d4bea00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import streamlit as st
import requests
import json
import pandas as pd
import folium
from streamlit_folium import st_folium
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
from branca.colormap import LinearColormap
import pytz
st.set_page_config(layout="wide", page_title="Real-Time CoWIN Weather Data Dashboard")
@st.cache_data(ttl=300) # Cache data for 5 minutes (300 seconds)
def fetch_data():
hk_tz = pytz.timezone('Asia/Hong_Kong')
current_time = datetime.now(hk_tz).strftime('%Y-%m-%dT%H:%M:%S')
url = f'https://cowin.hku.hk/API/data/CoWIN/map?time={current_time}'
response = requests.get(url)
return json.loads(response.text), current_time
data, fetched_time = fetch_data()
features = data
df = pd.json_normalize(features)
df.rename(columns={
'station': 'Station',
'temp': 'Temperature',
'lat': 'Latitude',
'lon': 'Longitude',
'wd': 'Wind Direction',
'ws': 'Wind Speed',
'rh': 'Relative Humidity',
'uv': 'UV Radiation',
'me_name': 'Name'
}, inplace=True)
attribute = st.selectbox(
'Select Weather Attributes to Plot and Map (Data from HKO-HKU CoWIN)',
['Temperature', 'Wind Speed', 'Relative Humidity', 'UV Radiation']
)
col1, col2, col3 = st.columns([1.65, 2, 1.2])
with col1:
attr_series = pd.Series(df[attribute].dropna())
hist_data = np.histogram(attr_series, bins=10)
bin_edges = hist_data[1]
counts = hist_data[0]
def get_color(value, min_value, max_value):
ratio = (value - min_value) / (max_value - min_value)
r = int(255 * ratio)
b = int(255 * (1 - ratio))
return f'rgb({r}, 0, {b})'
fig = go.Figure()
for i in range(len(bin_edges) - 1):
bin_center = (bin_edges[i] + bin_edges[i + 1]) / 2
color = get_color(bin_center, bin_edges.min(), bin_edges.max())
fig.add_trace(go.Bar(
x=[f'{bin_edges[i]:.1f} - {bin_edges[i + 1]:.1f}'],
y=[counts[i]],
marker_color=color,
name=f'{bin_edges[i]:.1f} - {bin_edges[i + 1]:.1f}'
))
fig.update_layout(
xaxis_title=f'{attribute}',
yaxis_title='Count',
title=f'{attribute} Distribution',
bargap=0.2,
title_font_size=20,
xaxis_title_font_size=14,
yaxis_title_font_size=14,
height=350,
xaxis=dict(title_font_size=14),
yaxis=dict(title_font_size=14)
)
st.plotly_chart(fig, use_container_width=True)
st.caption(f"Data fetched at: {fetched_time}")
with st.container():
col_1, col_2 = st.columns([1, 1])
with col_1:
if attr_series.size > 0:
avg_attr = np.mean(attr_series)
std_attr = np.std(attr_series)
max_attr = np.max(attr_series)
min_attr = np.min(attr_series)
st.metric(label=f"Average {attribute}", value=f"{avg_attr:.2f}")
st.metric(label=f"Minimum {attribute}", value=f"{min_attr:.2f}")
with col_2:
st.metric(label=f"Maximum {attribute}", value=f"{max_attr:.2f}")
st.metric(label=f"Std. Dev {attribute}", value=f"{std_attr:.2f}")
def attribute_to_color(value, min_value, max_value):
"""Convert a value to a color based on the gradient."""
ratio = (value - min_value) / (max_value - min_value)
return LinearColormap(['blue', 'purple', 'red']).rgb_hex_str(ratio)
with col2:
m = folium.Map(location=[22.3547, 114.1483], zoom_start=11, tiles='https://landsd.azure-api.net/dev/osm/xyz/basemap/gs/WGS84/tile/{z}/{x}/{y}.png?key=f4d3e21d4fc14954a1d5930d4dde3809',attr="Map infortmation from Lands Department")
folium.TileLayer(
tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/label/hk/en/wgs84/{z}/{x}/{y}.png',
attr="Map infortmation from Lands Department").add_to(m)
min_value = df[attribute].min()
max_value = df[attribute].max()
for _, row in df.iterrows():
lat = row['Latitude']
lon = row['Longitude']
station = row['Station']
name = row['Name']
value = row[attribute]
color = attribute_to_color(value, min_value, max_value) if pd.notna(value) else 'gray'
folium.Marker(
location=[lat, lon],
popup=(
f"<p style='font-size: 12px; background-color: white; padding: 5px; border-radius: 5px;'>"
f"Station: {station}<br>"
f"Name: {name}<br>"
f"{attribute}: {value}<br>"
f"</p>"
),
icon=folium.DivIcon(
html=f'<div style="font-size: 10pt; color: {color}; padding: 2px; border-radius: 5px;">'
f'<strong>{value}</strong></div>'
)
).add_to(m)
# Create a color scale legend
colormap = folium.LinearColormap(
colors=['blue', 'purple', 'red'],
index=[min_value, (min_value + max_value) / 2, max_value],
vmin=min_value,
vmax=max_value,
caption=f'{attribute}'
)
colormap.add_to(m)
st_folium(m, use_container_width=True , height=650)
with col3:
st.markdown(
"""
<style>
.dataframe-container {
height: 600px;
overflow-y: auto;
}
</style>
""",
unsafe_allow_html=True
)
st.dataframe(df[['Station', 'Name', 'Temperature', 'Wind Speed', 'Relative Humidity', 'UV Radiation', 'Latitude', 'Longitude']], height=600)
if st.button("Refresh Data"):
st.experimental_rerun()
hk_tz = pytz.timezone('Asia/Hong_Kong')
current_time = datetime.now(hk_tz)
if 'last_ran' not in st.session_state or (current_time - st.session_state.last_ran.replace(tzinfo=hk_tz)).total_seconds() > 300:
st.session_state.last_ran = current_time
st.experimental_rerun() |