File size: 5,848 Bytes
d4bea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import streamlit as st
import requests
import json
import pandas as pd
import folium
from streamlit_folium import st_folium
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
from branca.colormap import LinearColormap
import pytz

st.set_page_config(layout="wide", page_title="Real-Time CoWIN Weather Data Dashboard")

@st.cache_data(ttl=300)  # Cache data for 5 minutes (300 seconds)
def fetch_data():
    hk_tz = pytz.timezone('Asia/Hong_Kong')
    current_time = datetime.now(hk_tz).strftime('%Y-%m-%dT%H:%M:%S')
    url = f'https://cowin.hku.hk/API/data/CoWIN/map?time={current_time}'
    response = requests.get(url)
    return json.loads(response.text), current_time

data, fetched_time = fetch_data()

features = data
df = pd.json_normalize(features)

df.rename(columns={
    'station': 'Station',
    'temp': 'Temperature',
    'lat': 'Latitude',
    'lon': 'Longitude',
    'wd': 'Wind Direction',
    'ws': 'Wind Speed',
    'rh': 'Relative Humidity',
    'uv': 'UV Radiation',
    'me_name': 'Name'
}, inplace=True)

attribute = st.selectbox(
    'Select Weather Attributes to Plot and Map (Data from HKO-HKU CoWIN)',
    ['Temperature', 'Wind Speed', 'Relative Humidity', 'UV Radiation']
)

col1, col2, col3 = st.columns([1.65, 2, 1.2])

with col1:
    attr_series = pd.Series(df[attribute].dropna())

    hist_data = np.histogram(attr_series, bins=10)
    bin_edges = hist_data[1]
    counts = hist_data[0]

    def get_color(value, min_value, max_value):
        ratio = (value - min_value) / (max_value - min_value)
        r = int(255 * ratio)
        b = int(255 * (1 - ratio))
        return f'rgb({r}, 0, {b})'

    fig = go.Figure()

    for i in range(len(bin_edges) - 1):
        bin_center = (bin_edges[i] + bin_edges[i + 1]) / 2
        color = get_color(bin_center, bin_edges.min(), bin_edges.max())
        fig.add_trace(go.Bar(
            x=[f'{bin_edges[i]:.1f} - {bin_edges[i + 1]:.1f}'],
            y=[counts[i]],
            marker_color=color,
            name=f'{bin_edges[i]:.1f} - {bin_edges[i + 1]:.1f}'
        ))

    fig.update_layout(
        xaxis_title=f'{attribute}',
        yaxis_title='Count',
        title=f'{attribute} Distribution',
        bargap=0.2,
        title_font_size=20,
        xaxis_title_font_size=14,
        yaxis_title_font_size=14,
        height=350,
        xaxis=dict(title_font_size=14),
        yaxis=dict(title_font_size=14)
    )

    st.plotly_chart(fig, use_container_width=True)
    st.caption(f"Data fetched at: {fetched_time}")

    with st.container():
        col_1, col_2 = st.columns([1, 1])
        with col_1:
            if attr_series.size > 0:
                avg_attr = np.mean(attr_series)
                std_attr = np.std(attr_series)
                max_attr = np.max(attr_series)
                min_attr = np.min(attr_series)

                st.metric(label=f"Average {attribute}", value=f"{avg_attr:.2f}")
                st.metric(label=f"Minimum {attribute}", value=f"{min_attr:.2f}")
        with col_2:
            st.metric(label=f"Maximum {attribute}", value=f"{max_attr:.2f}")
            st.metric(label=f"Std. Dev {attribute}", value=f"{std_attr:.2f}")

def attribute_to_color(value, min_value, max_value):
    """Convert a value to a color based on the gradient."""
    ratio = (value - min_value) / (max_value - min_value)
    return LinearColormap(['blue', 'purple', 'red']).rgb_hex_str(ratio)

with col2:
    m = folium.Map(location=[22.3547, 114.1483], zoom_start=11, tiles='https://landsd.azure-api.net/dev/osm/xyz/basemap/gs/WGS84/tile/{z}/{x}/{y}.png?key=f4d3e21d4fc14954a1d5930d4dde3809',attr="Map infortmation from Lands Department")
    folium.TileLayer(
        tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/label/hk/en/wgs84/{z}/{x}/{y}.png',
        attr="Map infortmation from Lands Department").add_to(m)

    min_value = df[attribute].min()
    max_value = df[attribute].max()

    for _, row in df.iterrows():
        lat = row['Latitude']
        lon = row['Longitude']
        station = row['Station']
        name = row['Name']
        value = row[attribute]

        color = attribute_to_color(value, min_value, max_value) if pd.notna(value) else 'gray'

        folium.Marker(
            location=[lat, lon],
            popup=(
                f"<p style='font-size: 12px; background-color: white; padding: 5px; border-radius: 5px;'>"
                f"Station: {station}<br>"
                f"Name: {name}<br>"
                f"{attribute}: {value}<br>"
                f"</p>"
            ),
            icon=folium.DivIcon(
                html=f'<div style="font-size: 10pt; color: {color}; padding: 2px; border-radius: 5px;">'
                     f'<strong>{value}</strong></div>'
            )
        ).add_to(m)

    # Create a color scale legend
    colormap = folium.LinearColormap(
        colors=['blue', 'purple', 'red'],
        index=[min_value, (min_value + max_value) / 2, max_value],
        vmin=min_value,
        vmax=max_value,
        caption=f'{attribute}'
    )
    colormap.add_to(m)

    st_folium(m, use_container_width=True , height=650)

with col3:
    st.markdown(
        """
        <style>
        .dataframe-container {
            height: 600px;
            overflow-y: auto;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    st.dataframe(df[['Station', 'Name', 'Temperature', 'Wind Speed', 'Relative Humidity', 'UV Radiation', 'Latitude', 'Longitude']], height=600)

if st.button("Refresh Data"):
    st.experimental_rerun()

hk_tz = pytz.timezone('Asia/Hong_Kong')
current_time = datetime.now(hk_tz)
if 'last_ran' not in st.session_state or (current_time - st.session_state.last_ran.replace(tzinfo=hk_tz)).total_seconds() > 300:
    st.session_state.last_ran = current_time
    st.experimental_rerun()