Spaces:
Runtime error
Runtime error
File size: 7,210 Bytes
d4bea00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import folium
from folium import LinearColormap
import requests
from datetime import datetime, timedelta
from streamlit_folium import st_folium
import pytz
from datetime import datetime
# Set page layout to wide
st.set_page_config(layout="wide", page_title="Real-Time Relative Humidity Data Dashboard")
# Function to load data
@st.cache_data(ttl=300) # Cache data to avoid reloading every time
def load_data():
with st.spinner("Loading data..."):
response = requests.get("https://csdi.vercel.app/weather/rhum")
data = response.json()
features = data['features']
df = pd.json_normalize(features)
df.rename(columns={
'properties.Relative Humidity(percent)': 'Relative Humidity (%)',
'properties.Automatic Weather Station': 'Station Name',
'geometry.coordinates': 'Coordinates'
}, inplace=True)
df.dropna(subset=['Relative Humidity (%)'], inplace=True)
hk_tz = pytz.timezone('Asia/Hong_Kong')
fetch_time = datetime.now(hk_tz).strftime('%Y-%m-%dT%H:%M:%S')
return df, fetch_time
# Check if the data has been loaded before
if 'last_run' not in st.session_state or (datetime.now() - st.session_state.last_run) > timedelta(minutes=5):
st.session_state.df, st.session_state.fetch_time = load_data()
st.session_state.last_run = datetime.now()
# Data
df = st.session_state.df
fetch_time = st.session_state.fetch_time
# Compute statistics
humidity_data = df['Relative Humidity (%)']
avg_humidity = humidity_data.mean()
max_humidity = humidity_data.max()
min_humidity = humidity_data.min()
std_humidity = humidity_data.std()
# Create three columns
col1, col2, col3 = st.columns([1.65, 2, 1.15])
# Column 1: Histogram and statistics
with col1:
# Define colors for gradient
color_scale = ['#58a0db', '#0033cc']
# Create histogram
fig = px.histogram(df, x='Relative Humidity (%)', nbins=20,
labels={'Relative Humidity (%)': 'Relative Humidity (%)'},
title='Relative Humidity Histogram',
color_discrete_sequence=color_scale)
# Add average line
fig.add_shape(
go.layout.Shape(
type="line",
x0=avg_humidity,
y0=0,
x1=avg_humidity,
y1=df['Relative Humidity (%)'].value_counts().max(),
line=dict(color="red", width=2, dash="dash"),
)
)
# Update layout
fig.update_layout(
xaxis_title='Relative Humidity (%)',
yaxis_title='Count',
title='Relative Humidity Distribution',
bargap=0.2,
title_font_size=20,
xaxis_title_font_size=14,
yaxis_title_font_size=14,
height=350,
shapes=[{
'type': 'rect',
'x0': min_humidity,
'x1': max_humidity,
'y0': 0,
'y1': df['Relative Humidity (%)'].value_counts().max(),
'fillcolor': 'rgba(0, 100, 255, 0.2)',
'line': {
'color': 'rgba(0, 100, 255, 0.2)',
'width': 0
},
'opacity': 0.1
}]
)
# Add annotations
fig.add_annotation(
x=avg_humidity,
y=df['Relative Humidity (%)'].value_counts().max() * 0.9,
text=f"Average: {avg_humidity:.2f}%",
showarrow=True,
arrowhead=1
)
st.plotly_chart(fig, use_container_width=True)
st.caption(f"Data fetched at: {fetch_time}")
# Display statistics
col_1, col_2 = st.columns([1, 1])
with col_1:
st.metric(label="Average R.Humidity (%)", value=f"{avg_humidity:.2f}")
st.metric(label="Minimum R.Humidity (%)", value=f"{min_humidity:.2f}")
with col_2:
st.metric(label="Maximum R.Humidity (%)", value=f"{max_humidity:.2f}")
st.metric(label="Std. Dev (%)", value=f"{std_humidity:.2f}")
# Function to convert humidity to color based on gradient
def humidity_to_color(humidity, min_humidity, max_humidity):
if pd.isna(humidity):
return 'rgba(0, 0, 0, 0)' # Return a transparent color if the humidity is NaN
norm_humidity = (humidity - min_humidity) / (max_humidity - min_humidity)
# Colors from light blue (#add8e6) to dark blue (#00008b)
if norm_humidity < 0.5:
r = int(173 + (0 - 173) * (2 * norm_humidity))
g = int(216 + (0 - 216) * (2 * norm_humidity))
b = int(230 + (139 - 230) * (2 * norm_humidity))
else:
r = int(0 + (0 - 0) * (2 * (norm_humidity - 0.5)))
g = int(0 + (0 - 0) * (2 * (norm_humidity - 0.5)))
b = int(139 + (139 - 139) * (2 * (norm_humidity - 0.5)))
return f'rgb({r}, {g}, {b})'
# Column 2: Map
with col2:
with st.spinner("Loading map..."):
m = folium.Map(location=[22.3547, 114.1483], zoom_start=11, tiles='https://landsd.azure-api.net/dev/osm/xyz/basemap/gs/WGS84/tile/{z}/{x}/{y}.png?key=f4d3e21d4fc14954a1d5930d4dde3809',attr="Map infortmation from Lands Department")
folium.TileLayer(
tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/label/hk/en/wgs84/{z}/{x}/{y}.png',
attr="Map infortmation from Lands Department"
).add_to(m)
min_humidity = df['Relative Humidity (%)'].min()
max_humidity = df['Relative Humidity (%)'].max()
colormap = LinearColormap(
colors=['#58a0db', 'blue'],
index=[min_humidity, max_humidity],
vmin=min_humidity,
vmax=max_humidity,
caption='Relative Humidity (%)'
)
colormap.add_to(m)
for _, row in df.iterrows():
humidity = row['Relative Humidity (%)']
color = humidity_to_color(humidity, min_humidity, max_humidity)
folium.Marker(
location=[row['Coordinates'][1], row['Coordinates'][0]],
popup=f"<p style='font-size: 12px; background-color: white; padding: 5px; border-radius: 5px;'>{row['Station Name']}: {humidity:.1f}%</p>",
icon=folium.DivIcon(
html=f'<div style="font-size: 10pt; color: {color}; padding: 2px; border-radius: 5px;">'
f'<strong>{humidity:.1f}%</strong></div>'
)
).add_to(m)
st_folium(m,use_container_width=True , height=650)
# Column 3: Data Table
with col3:
st.markdown(
"""
<style>
.dataframe-container {
height: 600px;
overflow-y: auto;
}
.dataframe th, .dataframe td {
text-align: left;
padding: 8px;
}
</style>
""",
unsafe_allow_html=True
)
# Rename column for display
df_display = df[['Station Name', 'Relative Humidity (%)']].rename(columns={'Relative Humidity (%)': 'R.Humidity'})
st.dataframe(df_display, height=600)
# Refresh Button
if st.button("Refresh Data"):
with st.spinner("Refreshing data..."):
st.session_state.df, st.session_state.fetch_time = load_data()
st.session_state.last_run = datetime.now()
st.experimental_rerun()
|