File size: 7,001 Bytes
d4bea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import streamlit as st
import requests
import json
import pandas as pd
import folium
from streamlit_folium import st_folium
import plotly.graph_objects as go
import numpy as np
from datetime import datetime, timezone
import time
import pytz

# Set page layout to wide
st.set_page_config(layout="wide", page_title="Real-Time Temperature Data Dashboard")

# Function to fetch JSON data with caching and expiration
@st.cache_data(ttl=300)  # Cache data for 5 minutes (300 seconds)
def fetch_data():
    url = 'https://csdi.vercel.app/weather/temp'
    response = requests.get(url)
    hk_tz = pytz.timezone('Asia/Hong_Kong')
    fetch_time = datetime.now(hk_tz).strftime('%Y-%m-%dT%H:%M:%S')
    return json.loads(response.text), fetch_time

# Fetch the JSON data
data, fetch_time = fetch_data()

# Create a Pandas DataFrame from the JSON data
features = data['features']
df = pd.json_normalize(features)

# Rename columns for easier access
df.rename(columns={
    'properties.Automatic Weather Station': 'Station',
    'properties.Air Temperature(degree Celsius)': 'Temperature',
    'geometry.coordinates': 'Coordinates'
}, inplace=True)

# Split Coordinates into separate Longitude and Latitude columns
df[['Longitude', 'Latitude']] = pd.DataFrame(df['Coordinates'].tolist(), index=df.index)

# Extract temperature data
temps = df['Temperature'].dropna().tolist()

# Create three columns
col1, col2, col3 = st.columns([1.65, 2, 1.15])

# Column 1: Histogram and statistics with two-sigma analysis
with col1:
    # Row 1: Histogram
    with st.container():
        # Convert list to pandas Series
        temps_series = pd.Series(temps)

        # Calculate histogram data
        hist_data = np.histogram(temps_series, bins=10)
        bin_edges = hist_data[1]
        counts = hist_data[0]


        # Create a color gradient from blue to red
        def get_color(value, min_value, max_value):
            ratio = (value - min_value) / (max_value - min_value)
            r = int(255 * ratio)  # Red component
            b = int(255 * (1 - ratio))  # Blue component
            return f'rgb({r}, 0, {b})'


        # Create histogram with Plotly Graph Objects
        fig = go.Figure()

        # Add histogram bars with gradient colors
        for i in range(len(bin_edges) - 1):
            bin_center = (bin_edges[i] + bin_edges[i + 1]) / 2
            color = get_color(bin_center, bin_edges.min(), bin_edges.max())
            fig.add_trace(go.Bar(
                x=[f'{bin_edges[i]:.1f} - {bin_edges[i + 1]:.1f}'],
                y=[counts[i]],
                marker_color=color,
                name=f'{bin_edges[i]:.1f} - {bin_edges[i + 1]:.1f}'
            ))

        # Customize layout
        fig.update_layout(
            xaxis_title='Temperature (°C)',
            yaxis_title='Count',
            title='Temperature Distribution',
            bargap=0.2,  # Adjust gap between bars
            title_font_size=20,
            xaxis_title_font_size=14,
            yaxis_title_font_size=14,
            height=350,  # Set plot height
            xaxis=dict(title_font_size=14),
            yaxis=dict(title_font_size=14)
        )

        # Display the plot in Streamlit
        st.plotly_chart(fig, use_container_width=True)
        st.caption(f"Data fetched at: {fetch_time}")

    # Row 2: Statistics
    with st.container():
        col_1, col_2 = st.columns([1, 1])
        with col_1:
            if temps:
                avg_temp = np.mean(temps)
                std_temp = np.std(temps)
                max_temp = np.max(temps)
                min_temp = np.min(temps)

                two_sigma_range = (avg_temp - 2 * std_temp, avg_temp + 2 * std_temp)

                st.metric(label="Average Temperature (°C)", value=f"{avg_temp:.2f}")
                st.metric(label="Minimum Temperature (°C)", value=f"{min_temp:.2f}")
        with col_2:
            st.metric(label="Maximum Temperature (°C)", value=f"{max_temp:.2f}")
            st.metric(label="Std. Dev (°C)", value=f"{std_temp:.2f}")


# Column 2: Map
def temperature_to_color(temp, min_temp, max_temp):
    """Convert temperature to a color based on the gradient from blue (low) to red (high)."""
    norm_temp = (temp - min_temp) / (max_temp - min_temp)
    red = int(255 * norm_temp)
    blue = int(255 * (1 - norm_temp))
    return f'rgb({red}, 0, {blue})'

with col2:
    # Create the base map
    m = folium.Map(location=[22.3547, 114.1483], zoom_start=11, tiles='https://landsd.azure-api.net/dev/osm/xyz/basemap/gs/WGS84/tile/{z}/{x}/{y}.png?key=f4d3e21d4fc14954a1d5930d4dde3809',attr="Map infortmation from Lands Department")
    folium.TileLayer(
        tiles='https://mapapi.geodata.gov.hk/gs/api/v1.0.0/xyz/label/hk/en/wgs84/{z}/{x}/{y}.png',
        attr="Map infortmation from Lands Department"
    ).add_to(m)
    # Determine min and max temperatures for color scaling
    min_temp = df['Temperature'].min()
    max_temp = df['Temperature'].max()

    # Create a color scale legend
    colormap = folium.LinearColormap(
        colors=['blue', 'white', 'red'],
        index=[min_temp, (min_temp + max_temp) / 2, max_temp],
        vmin=min_temp,
        vmax=max_temp,
        caption='Temperature (°C)'
    )
    colormap.add_to(m)

    # Iterate through each row in the DataFrame
    for _, row in df.iterrows():
        lat = row['Latitude']
        lon = row['Longitude']
        station = row['Station']
        temp = row['Temperature']

        # Determine the color based on the temperature
        color = temperature_to_color(temp, min_temp, max_temp) if pd.notna(temp) else 'gray'

        # Create a marker with temperature data
        folium.Marker(
            location=[lat, lon],
            popup=f"<p style='font-size: 12px; background-color: white; padding: 5px; border-radius: 5px;'>{station}: {temp:.1f}°C</p>",
            icon=folium.DivIcon(
                html=f'<div style="font-size: 10pt; color: {color}; padding: 2px; border-radius: 5px;">'
                     f'<strong>{temp:.1f}°C</strong></div>'
            )
        ).add_to(m)

    # Render the map in Streamlit
    st_folium(m, use_container_width=True , height=650)

# Column 3: Data table
with col3:
    # Set the table height using CSS
    st.markdown(
        """
        <style>
        .dataframe-container {
            height: 600px;
            overflow-y: auto;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    # Display the DataFrame with the custom CSS class
    st.dataframe(df[['Station', 'Temperature', 'Latitude', 'Longitude']], height=600)

# Add a refresh button
if st.button("Refresh Data"):
    st.experimental_rerun()

# Automatically rerun every 5 minutes
if 'last_ran' not in st.session_state:
    st.session_state.last_ran = datetime.now(timezone.utc)

current_time = datetime.now(timezone.utc)
if (current_time - st.session_state.last_ran).total_seconds() > 300:
    st.session_state.last_ran = current_time
    st.experimental_rerun()