Spaces:
Sleeping
Sleeping
File size: 20,262 Bytes
70d06c8 aacc458 dbe6919 aacc458 dbe6919 aacc458 70d06c8 aacc458 70d06c8 dbe6919 70d06c8 aacc458 dbe6919 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 dbe6919 70d06c8 aacc458 70d06c8 aacc458 70d06c8 dbe6919 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 dbe6919 70d06c8 aacc458 70d06c8 dbe6919 70d06c8 dbe6919 aacc458 70d06c8 dbe6919 70d06c8 dbe6919 70d06c8 aacc458 70d06c8 aacc458 dbe6919 aacc458 dbe6919 70d06c8 dbe6919 aacc458 70d06c8 dbe6919 70d06c8 dbe6919 70d06c8 aacc458 70d06c8 aacc458 dbe6919 70d06c8 aacc458 70d06c8 aacc458 dbe6919 aacc458 dbe6919 70d06c8 dbe6919 70d06c8 aacc458 70d06c8 aacc458 dbe6919 aacc458 70d06c8 dbe6919 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 aacc458 70d06c8 dbe6919 70d06c8 aacc458 dbe6919 70d06c8 aacc458 70d06c8 aacc458 dbe6919 70d06c8 aacc458 70d06c8 aacc458 dbe6919 70d06c8 aacc458 70d06c8 aacc458 70d06c8 dbe6919 70d06c8 dbe6919 70d06c8 aacc458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
#!/usr/bin/env python
# coding: utf-8
import re
import time
from random import shuffle, sample
from langgraph.checkpoint.sqlite import SqliteSaver
# Remove ChatGroq import
# from langchain_groq import ChatGroq
# Add ChatGoogleGenerativeAI import
from langchain_google_genai import ChatGoogleGenerativeAI
import os # Add os import
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from langchain_community.graphs import Neo4jGraph
from langchain_community.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import Field
from pydantic import BaseModel
from langgraph.graph import StateGraph
from llmlingua import PromptCompressor
from ki_gen.prompts import (
CYPHER_GENERATION_PROMPT,
CONCEPT_SELECTION_PROMPT,
BINARY_GRADER_PROMPT,
SCORE_GRADER_PROMPT,
RELEVANT_CONCEPTS_PROMPT,
)
# Import get_model which now handles Gemini
from ki_gen.utils import ConfigSchema, DocRetrieverState, get_model, format_doc
# ... (extract_cypher remains the same)
def extract_cypher(text: str) -> str:
"""Extract Cypher code from a text.
Args:
text: Text to extract Cypher code from.
Returns:
Cypher code extracted from the text.
"""
# The pattern to find Cypher code enclosed in triple backticks
pattern_1 = r"```cypher\n(.*?)```"
pattern_2 = r"```\n(.*?)```"
# Find all matches in the input text
matches_1 = re.findall(pattern_1, text, re.DOTALL)
matches_2 = re.findall(pattern_2, text, re.DOTALL)
return [
matches_1[0] if matches_1 else text,
matches_2[0] if matches_2 else text,
text
]
# Update default model and use get_model
def get_cypher_gen_chain(model: str = "gemini-2.0-flash"):
"""
Returns cypher gen chain using specified model for generation
This is used when the 'auto' cypher generation method has been configured
"""
llm_cypher_gen = get_model(model)
cypher_gen_chain = CYPHER_GENERATION_PROMPT | llm_cypher_gen | StrOutputParser() | extract_cypher
return cypher_gen_chain
# Update default model and use get_model
def get_concept_selection_chain(model: str = "gemini-2.0-flash"):
"""
Returns a chain to select the most relevant topic using specified model for generation.
This is used when the 'guided' cypher generation method has been configured
"""
llm_topic_selection = get_model(model)
print(f"FOUND LLM TOPIC SELECTION FOR THE CONCEPT SELECTION PROMPT : {llm_topic_selection}")
topic_selection_chain = CONCEPT_SELECTION_PROMPT | llm_topic_selection | StrOutputParser()
return topic_selection_chain
# ... (get_concepts remains the same)
def get_concepts(graph: Neo4jGraph):
concept_cypher = "MATCH (c:Concept) return c"
if isinstance(graph, Neo4jGraph):
concepts = graph.query(concept_cypher)
else:
user_input = input("Topics : ")
concepts = eval(user_input)
concepts_name = [concept['c']['name'] for concept in concepts]
return concepts_name
# Update to use get_model, remove Groq error handling
def get_related_concepts(graph: Neo4jGraph, question: str):
concepts = get_concepts(graph)
# Use get_model
llm = get_model()
print(f"this is the llm variable : {llm}")
def parse_answer(llm_answer : str):
try:
print(f"This the llm_answer : {llm_answer}")
# Adjust parsing if Gemini output format differs
return re.split("\n(?:\d)+\.\s", llm_answer.split("Concepts:")[1])[1:]
except Exception as e:
print(f"Error parsing LLM concept answer: {e}")
return [] # Return empty list on parsing error
related_concepts_chain = RELEVANT_CONCEPTS_PROMPT | llm | StrOutputParser() | parse_answer
print(f"This is the question of the user : {question}")
print(f"This is the concepts of the user : {concepts}")
# Remove specific Groq error handling block
try:
related_concepts_raw = related_concepts_chain.invoke({"user_query" : question, "concepts" : '\n'.join(concepts)})
print(f"related_concepts_raw : {related_concepts_raw}")
except Exception as e:
# Add generic error handling/logging for Gemini if needed
print(f"Error invoking related concepts chain: {e}")
related_concepts_raw = [] # Assign empty list on error
# We clean up the list we received from the LLM in case there were some hallucinations
related_concepts_cleaned = []
for related_concept in related_concepts_raw:
# If the concept returned from the LLM is in the list we keep it
if related_concept in concepts:
related_concepts_cleaned.append(related_concept)
else:
# The LLM sometimes only forgets a few words from the concept name
# We check if the generated concept is a substring of an existing one and if it is the case add it to the list
for concept in concepts:
if related_concept in concept:
related_concepts_cleaned.append(concept)
break
# TODO : Add concepts found via similarity search
return related_concepts_cleaned
# ... (build_concept_string, get_global_concepts remain the same)
def build_concept_string(graph: Neo4jGraph, concept_list: list[str]):
concept_string = ""
for concept in concept_list:
concept_description_query = f"""
MATCH (c:Concept {{name: "{concept}" }}) RETURN c.description
"""
concept_description = graph.query(concept_description_query)[0]['c.description']
concept_string += f"name: {concept}\ndescription: {concept_description}\n\n"
return concept_string
def get_global_concepts(graph: Neo4jGraph):
concept_cypher = "MATCH (gc:GlobalConcept) return gc"
if isinstance(graph, Neo4jGraph):
concepts = graph.query(concept_cypher)
else:
user_input = input("Topics : ")
concepts = eval(user_input)
concepts_name = [concept['gc']['name'] for concept in concepts]
return concepts_name
# Update concept selection error handling
def generate_cypher(state: DocRetrieverState, config: ConfigSchema):
"""
The node where the cypher is generated
"""
graph = config["configurable"].get("graph")
# --- Correction Applied Here ---
# Use .get() for safer access to 'query'
question = state.get('query')
if not question:
# Handle the case where query is missing
print("Error: 'query' key not found in state for generate_cypher node.")
# Return an empty list or appropriate error state
# This prevents the KeyError and stops processing for this branch if query is missing
return {"cyphers": []}
# --- End of Correction ---
related_concepts = get_related_concepts(graph, question)
cyphers = []
if config["configurable"].get("cypher_gen_method") == 'auto':
cypher_gen_chain = get_cypher_gen_chain()
cyphers = cypher_gen_chain.invoke({
"schema": graph.schema,
"question": question,
"concepts": related_concepts
})
# Remove specific Groq error handling block
try:
if config["configurable"].get("cypher_gen_method") == 'guided':
concept_selection_chain = get_concept_selection_chain()
print(f"Concept selection chain is : {concept_selection_chain}")
# Ensure 'current_plan_step' is also safely accessed if needed here, though it's used later
selected_topic = concept_selection_chain.invoke({"question" : question, "concepts": get_concepts(graph)})
print(f"Selected topic are : {selected_topic}")
# Safely get 'current_plan_step', defaulting to 0 if not found
current_plan_step = state.get('current_plan_step', 0)
cyphers = [generate_cypher_from_topic(selected_topic, current_plan_step)]
print(f"Cyphers are : {cyphers}")
except Exception as e:
# Add generic error handling/logging for Gemini if needed
print(f"Error during guided cypher generation: {e}")
cyphers = [] # Assign empty list on error
if config["configurable"].get("validate_cypher"):
# Ensure graph schema is correctly fetched if needed
if graph and hasattr(graph, 'structured_schema'):
corrector_schema = [Schema(el["start"], el["type"], el["end"]) for el in graph.structured_schema.get("relationships", [])]
cypher_corrector = CypherQueryCorrector(corrector_schema)
# Apply corrector only if cyphers were generated
if cyphers:
try:
cyphers = [cypher_corrector(cypher) for cypher in cyphers]
except Exception as corr_e:
print(f"Error during cypher correction: {corr_e}")
# Decide how to handle correction errors, maybe keep original cyphers
else:
print("Warning: Cypher validation skipped, graph or schema unavailable.")
return {"cyphers" : cyphers}
# ... (generate_cypher_from_topic, get_docs remain the same)
def generate_cypher_from_topic(selected_concept: str, plan_step: int):
"""
Helper function used when the 'guided' cypher generation method has been configured
"""
print(f"L.176 PLAN STEP : {plan_step}")
cypher_el = "(n) return n.title, n.description"
match plan_step:
case 0:
cypher_el = "(ts:TechnicalSpecification) RETURN ts.title, ts.scope, ts.description"
case 1:
cypher_el = "(rp:ResearchPaper) RETURN rp.title, rp.abstract"
case 2:
cypher_el = "(ki:KeyIssue) RETURN ki.description"
return f"MATCH (c:Concept {{name:'{selected_concept}'}})-[:RELATED_TO]-{cypher_el}"
def get_docs(state:DocRetrieverState, config:ConfigSchema):
"""
This node retrieves docs from the graph using the generated cypher
"""
graph = config["configurable"].get("graph")
output = []
if graph is not None and state.get("cyphers"): # Check if cyphers exist
for cypher in state["cyphers"]:
try:
output = graph.query(cypher)
# Assuming the first successful query is sufficient
if output:
break
except Exception as e:
print(f"Failed to retrieve docs with cypher '{cypher}': {e}")
# Continue to try next cypher if one fails
# Clean up the docs we received as there may be duplicates depending on the cypher query
all_docs = []
for doc in output:
unwinded_doc = {}
# Ensure doc is a dictionary before iterating
if isinstance(doc, dict):
for key in doc:
if isinstance(doc[key], dict):
# If a value is a dict, treat it as a separate document
all_docs.append(doc[key])
else:
unwinded_doc.update({key: doc[key]})
# Add the unwinded parts if any keys were not dictionaries
if unwinded_doc:
all_docs.append(unwinded_doc)
filtered_docs = []
seen_docs = set() # Use a set for faster duplicate checking based on a unique identifier
for doc in all_docs:
# Create a tuple of items to check for duplicates, assuming dicts are hashable
# If dicts contain unhashable types (like lists), convert them to strings or use a primary key
try:
doc_tuple = tuple(sorted(doc.items()))
if doc_tuple not in seen_docs:
filtered_docs.append(doc)
seen_docs.add(doc_tuple)
except TypeError:
# Handle cases where doc items are not hashable (e.g., contain lists/dicts)
# Fallback: convert doc to string for uniqueness check (less reliable)
doc_str = str(sorted(doc.items()))
if doc_str not in seen_docs:
filtered_docs.append(doc)
seen_docs.add(doc_str)
return {"docs": filtered_docs}
# Data model
class GradeDocumentsBinary(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(
description="Documents are relevant to the question, 'yes' or 'no'"
)
# Update default model and use get_model
def get_binary_grader(model="gemini-2.0-flash"):
"""
Returns a binary grader to evaluate relevance of documents using specified model for generation
This is used when the 'binary' evaluation method has been configured
"""
llm_grader_binary = get_model(model)
# Check if the model supports structured output, otherwise use standard invocation
try:
# Attempt to get structured output
structured_llm_grader_binary = llm_grader_binary.with_structured_output(GradeDocumentsBinary)
retrieval_grader_binary = BINARY_GRADER_PROMPT | structured_llm_grader_binary
except NotImplementedError:
print(f"Warning: Model {model} may not support structured output directly for binary grading. Falling back.")
# Fallback: parse the string output if structured output fails
from langchain_core.output_parsers import SimpleJsonOutputParser
# You might need to adjust the prompt to explicitly ask for JSON
retrieval_grader_binary = BINARY_GRADER_PROMPT | llm_grader_binary | SimpleJsonOutputParser() # Or StrOutputParser and manual parsing
return retrieval_grader_binary
class GradeDocumentsScore(BaseModel):
"""Score for relevance check on retrieved documents."""
score: float = Field(
description="Documents are relevant to the question, score between 0 (completely irrelevant) and 1 (perfectly relevant)"
)
# Update default model and use get_model
def get_score_grader(model="gemini-2.0-flash"):
"""
Returns a score grader to evaluate relevance of documents using specified model for generation
This is used when the 'score' evaluation method has been configured
"""
llm_grader_score = get_model(model)
# Check if the model supports structured output
try:
structured_llm_grader_score = llm_grader_score.with_structured_output(GradeDocumentsScore)
retrieval_grader_score = SCORE_GRADER_PROMPT | structured_llm_grader_score
except NotImplementedError:
print(f"Warning: Model {model} may not support structured output directly for score grading. Falling back.")
# Fallback: parse the string output if structured output fails
from langchain_core.output_parsers import SimpleJsonOutputParser
# Adjust prompt if needed
retrieval_grader_score = SCORE_GRADER_PROMPT | llm_grader_score | SimpleJsonOutputParser() # Or StrOutputParser and manual parsing
return retrieval_grader_score
# Update default model
def eval_doc(doc, query, method="binary", threshold=0.7, eval_model="gemini-2.0-flash"):
'''
doc : the document to evaluate
query : the query to which to doc shoud be relevant
method : "binary" or "score"
threshold : for "score" method, score above which a doc is considered relevant
'''
try:
if method == "binary":
retrieval_grader_binary = get_binary_grader(model=eval_model)
result = retrieval_grader_binary.invoke({"question": query, "document":doc})
# Handle both structured and parsed output
binary_score = result.binary_score if isinstance(result, GradeDocumentsBinary) else result.get("binary_score", "no")
return 1 if (binary_score.lower() == 'yes') else 0
elif method == "score":
retrieval_grader_score = get_score_grader(model=eval_model)
result = retrieval_grader_score.invoke({"query": query, "document":doc})
# Handle both structured and parsed output
score = result.score if isinstance(result, GradeDocumentsScore) else result.get("score")
if score is not None:
return score if float(score) >= threshold else 0
else:
print("Warning: Couldn't parse score, marking document as relevant by default.")
return 1 # Default to relevant if score parsing fails
else:
raise ValueError("Invalid method")
except Exception as e:
print(f"Error evaluating document: {e}")
return 0 # Default to irrelevant on error
# Update default model
def eval_docs(state: DocRetrieverState, config: ConfigSchema):
"""
This node performs evaluation of the retrieved docs and
"""
eval_method = config["configurable"].get("eval_method") or "binary"
MAX_DOCS = config["configurable"].get("max_docs") or 15
# Update default model name
eval_model_name = config["configurable"].get("eval_model") or "gemini-2.0-flash"
valid_doc_scores = []
# Ensure 'docs' exists and is a list
docs_to_evaluate = state.get("docs", [])
if not isinstance(docs_to_evaluate, list):
print("Warning: 'docs' is not a list, skipping evaluation.")
docs_to_evaluate = []
# Sample safely
sample_size = min(25, len(docs_to_evaluate))
sampled_docs = sample(docs_to_evaluate, sample_size) if sample_size > 0 else []
for doc in sampled_docs:
# Ensure doc is not None before formatting
if doc is None:
print("Warning: Encountered None document during evaluation, skipping.")
continue
formatted_doc_str = format_doc(doc)
# Add basic check for empty formatted doc
if not formatted_doc_str.strip():
print(f"Warning: Skipping empty formatted document: {doc}")
continue
score = eval_doc(
doc=formatted_doc_str,
query=state["query"], # This line assumes "query" exists in state
method=eval_method,
threshold=config["configurable"].get("eval_threshold") or 0.7,
eval_model=eval_model_name # Pass the eval_model name
)
# Ensure score is numeric before appending
if isinstance(score, (int, float)):
if score > 0: # Only add if relevant (score > 0 or binary score == 1)
valid_doc_scores.append((doc, score))
else:
print(f"Warning: Received non-numeric score ({score}) for doc {doc}, skipping.")
if eval_method == 'score':
# Get at most MAX_DOCS items with the highest score if score method was used
valid_docs_sorted = sorted(valid_doc_scores, key=lambda x: x[1], reverse=True) # Sort descending
valid_docs = [valid_doc[0] for valid_doc in valid_docs_sorted[:MAX_DOCS]]
else:
# Get at mots MAX_DOCS items at random if binary method was used
shuffle(valid_doc_scores)
valid_docs = [valid_doc[0] for valid_doc in valid_doc_scores[:MAX_DOCS]]
# Ensure existing valid_docs is a list before concatenating
existing_valid_docs = state.get("valid_docs", [])
if not isinstance(existing_valid_docs, list):
existing_valid_docs = []
return {"valid_docs": valid_docs + existing_valid_docs}
def build_data_retriever_graph(memory):
"""
Builds the data_retriever graph
"""
#with SqliteSaver.from_conn_string(":memory:") as memory :
graph_builder_doc_retriever = StateGraph(DocRetrieverState)
graph_builder_doc_retriever.add_node("generate_cypher", generate_cypher)
graph_builder_doc_retriever.add_node("get_docs", get_docs)
graph_builder_doc_retriever.add_node("eval_docs", eval_docs)
graph_builder_doc_retriever.add_edge("__start__", "generate_cypher")
graph_builder_doc_retriever.add_edge("generate_cypher", "get_docs")
graph_builder_doc_retriever.add_edge("get_docs", "eval_docs")
graph_builder_doc_retriever.add_edge("eval_docs", "__end__")
graph_doc_retriever = graph_builder_doc_retriever.compile(checkpointer=memory)
return graph_doc_retriever
# Remove Groq specific error handling function
# def error_concept_groq(msg,concepts,groq,question): ... |