Spaces:
Sleeping
Sleeping
File size: 7,170 Bytes
1f05644 9067d41 1f05644 9f6573c 1f05644 9f6573c 1f05644 9bd34e5 1f05644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from src.services.utils import tech_to_dict, stem
import requests as r
import json
import nltk
import itertools
import numpy as np
from sentence_transformers import *
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def retrieve_constraints(prompt):
request_input = {"models": ["meta-llama/llama-4-scout-17b-16e-instruct"], "messages": [{"role":"user", "content":prompt}]}
response = r.post("https://organizedprogrammers-bettergroqinterface.hf.space/chat", json=request_input)
print(f"response : {response}")
decoded_content = json.loads(response.content.decode())
llm_response = decoded_content["content"]
start_marker = '{'
end_marker = '}'
start_index = llm_response.find(start_marker) + len(start_marker)
end_index = llm_response.find(end_marker, start_index)
json_str = llm_response[start_index:end_index].strip()
constraints_json = json.loads("{"+json_str+"}")
return constraints_json
def preprocess_tech_data(_df):
if _df is None or "description" not in _df.columns:
return [], []
technologies_list = _df["description"].to_list()
tech_dict_raw = tech_to_dict(technologies_list)
tech_dict_filtered = [
t for t in tech_dict_raw if (
len(t.get("title", "")) >= 5 and
len(t.get("advantages", "")) >= 5 and
len(t.get("key_components", "")) >= 5
)
]
if not tech_dict_filtered:
return [], []
processed_tech_wt = stem(tech_dict_filtered,"technologies")
for t_item_wt in processed_tech_wt:
kc = t_item_wt.get("key_components")
if isinstance(kc, str):
t_item_wt["key_components"] = ''.join(nltk.sent_tokenize(kc))
else:
t_item_wt["key_components"] = ""
original_tech_for_display = tech_dict_filtered[:len(processed_tech_wt)]
_keys = list(processed_tech_wt[0].keys()) if processed_tech_wt else []
return processed_tech_wt, _keys, original_tech_for_display
def remove_over_repeated_technologies(result):
total_lists = len(result)
tech_title = {}
for idx, item in enumerate(result):
for tech in item['technologies']:
tech_title[tech[0]['title']] = 0 if tech[0]['title'] not in tech_title else tech_title[tech[0]['title']] + 1
threshold = total_lists * 0.3
print(threshold)
print(tech_title)
to_delete = []
for tech, lists in tech_title.items():
if lists > threshold:
print(f"This technology have been found over repeated : " + tech)
to_delete.append(tech)
for idx, item in enumerate(result):
result[idx]['technologies'] = [tech for tech in item['technologies'] if tech[0]['title'] not in to_delete]
return result
def get_contrastive_similarities(constraints, pre_encoded_tech_data, pre_encoded_tech_embeddings):
selected_pairs = []
matrix = []
constraint_descriptions = [c["description"] for c in constraints]
constraint_embeddings = model.encode(constraint_descriptions, show_progress_bar=False)
for i, constraint in enumerate(constraints):
constraint_embedding = constraint_embeddings[i]
constraint_matrix = []
for j, tech2 in enumerate(pre_encoded_tech_data):
tech_embedding = pre_encoded_tech_embeddings[j]
purpose_sim = model.similarity(constraint_embedding, tech_embedding)
if np.isnan(purpose_sim):
purpose_sim = 0.0
selected_pairs.append({
"constraint": constraint,
"id2": tech2["id"],
"similarity": purpose_sim
})
constraint_matrix.append(purpose_sim)
matrix.append(constraint_matrix)
return selected_pairs, matrix
def find_best_list_combinations(list1: list[str], list2: list[str], matrix) -> list[dict]:
if not list1 or not list2:
print("Warning: One or both input lists are empty. Returning an empty list.")
return []
MIN_SIMILARITY = 0.3
MAX_SIMILARITY = 0.8
possible_matches_for_each_l1 = []
for i in range(len(list1)):
valid_matches_for_l1_element = []
for j in range(len(list2)):
score = matrix[i][j]
if MIN_SIMILARITY <= score <= MAX_SIMILARITY:
valid_matches_for_l1_element.append((list2[j], score))
if not valid_matches_for_l1_element:
print(f"No valid matches found in list2 for '{list1[i]}' from list1 "
f"(score between {MIN_SIMILARITY} and {MAX_SIMILARITY}). "
"Returning an empty list as no complete combinations can be formed.")
else:
possible_matches_for_each_l1.append((valid_matches_for_l1_element, list1[i]))
result = []
for tech_list, problem in possible_matches_for_each_l1:
sorted_list = sorted(
tech_list,
key=lambda x: x[1].item() if hasattr(x[1], 'item') else float(x[1]),
reverse=True
)
top5 = sorted_list[:5]
result.append({
'technologies': top5,
'problem': problem
})
result = remove_over_repeated_technologies(result)
return result
def select_technologies(problem_technology_list):
distinct_techs = set()
candidate_map = []
for problem_data in problem_technology_list:
cand_dict = {}
for tech_info, sim in problem_data['technologies']:
tech_id = tech_info['id']
distinct_techs.add(tech_id)
cand_dict[tech_id] = float(sim)
candidate_map.append(cand_dict)
distinct_techs = sorted(list(distinct_techs))
n = len(problem_technology_list)
if n == 0:
return set()
min_k = None
best_set = None
best_avg = -1
print(f"Distinct technologies: {distinct_techs}")
print(f"Candidate map: {candidate_map}")
print(f"Number of problems: {n}")
for k in range(1, len(distinct_techs)+1):
if min_k is not None and k > min_k:
break
for T in itertools.combinations(distinct_techs, k):
total_sim = 0.0
covered = True
print(f"Trying combination: {T}")
for i in range(n):
max_sim = -1.0
found = False
for tech in T:
if tech in candidate_map[i]:
found = True
sim_val = candidate_map[i][tech]
if sim_val > max_sim:
max_sim = sim_val
if not found:
covered = False
break
else:
total_sim += max_sim
if covered:
avg_sim = total_sim / n
if min_k is None or k < min_k:
min_k = k
best_set = T
best_avg = avg_sim
elif k == min_k and avg_sim > best_avg:
best_set = T
best_avg = avg_sim
if min_k is not None and k == min_k:
break
if best_set is None:
return set()
return set(best_set) |