File size: 13,713 Bytes
040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 1392287 040cfa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import traceback
from fastapi import FastAPI, BackgroundTasks
from schemas import *
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from litellm.router import Router
from aiolimiter import AsyncLimiter
import pandas as pd
import asyncio
import re
import nltk
nltk.download('stopwords')
nltk.download('punkt_tab')
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import string
import subprocess
import requests
from dotenv import load_dotenv
load_dotenv()
import os
from lxml import etree
import zipfile
import io
import warnings
warnings.filterwarnings("ignore")
from bs4 import BeautifulSoup
app = FastAPI(title="Requirements Extractor")
app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=["*"], allow_methods=["*"], allow_origins=["*"])
llm_router = Router(model_list=[{"model_name": "gemini-v1", "litellm_params": {"model": "gemini/gemini-2.0-flash", "api_key": os.environ.get("GEMINI"), "max_retries": 10, "rpm": 15}},
{"model_name": "gemini-v2", "litellm_params": {"model": "gemini/gemini-2.5-flash", "api_key": os.environ.get("GEMINI"), "max_retries": 10, "rpm": 10}}]
, fallbacks=[{"gemini-v2": ["gemini-v1"]}], num_retries=10)
limiter_mapping = {
model["model_name"]: AsyncLimiter(model["litellm_params"]["rpm"], 60)
for model in llm_router.model_list
}
lemmatizer = WordNetLemmatizer()
NSMAP = {
'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main',
'v': 'urn:schemas-microsoft-com:vml'
}
def lemma(text: str):
stop_words = set(stopwords.words('english'))
txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
tokens = [token for token in word_tokenize(txt.lower()) if token not in stop_words]
return [lemmatizer.lemmatize(token) for token in tokens]
def get_docx_archive(url: str) -> zipfile.ZipFile:
"""Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
if not url.endswith("zip"):
raise ValueError("URL doit pointer vers un fichier ZIP")
doc_id = os.path.splitext(os.path.basename(url))[0]
resp = requests.get(url, verify=False, headers={
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
resp.raise_for_status()
with zipfile.ZipFile(io.BytesIO(resp.content)) as zf:
for file_name in zf.namelist():
if file_name.endswith(".docx"):
docx_bytes = zf.read(file_name)
return zipfile.ZipFile(io.BytesIO(docx_bytes))
elif file_name.endswith(".doc"):
input_path = f"/tmp/{doc_id}.doc"
output_path = f"/tmp/{doc_id}.docx"
docx_bytes = zf.read(file_name)
with open(input_path, "wb") as f:
f.write(docx_bytes)
subprocess.run([
"libreoffice",
"--headless",
"--convert-to", "docx",
"--outdir", "/tmp",
input_path
], check=True)
with open(output_path, "rb") as f:
docx_bytes = f.read()
os.remove(input_path)
os.remove(output_path)
return zipfile.ZipFile(io.BytesIO(docx_bytes))
raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")
def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
"""Parse le document.xml principal"""
xml_bytes = docx_zip.read('word/document.xml')
parser = etree.XMLParser(remove_blank_text=True)
return etree.fromstring(xml_bytes, parser=parser)
def clean_document_xml(root: etree._Element) -> None:
"""Nettoie le XML en modifiant l'arbre directement"""
# Suppression des balises <w:del> et leur contenu
for del_elem in root.xpath('//w:del', namespaces=NSMAP):
parent = del_elem.getparent()
if parent is not None:
parent.remove(del_elem)
# Désencapsulation des balises <w:ins>
for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
parent = ins_elem.getparent()
index = parent.index(ins_elem)
for child in ins_elem.iterchildren():
parent.insert(index, child)
index += 1
parent.remove(ins_elem)
# Nettoyage des commentaires
for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
parent = elem.getparent()
if parent is not None:
parent.remove(elem)
def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
"""Crée un nouveau docx avec le XML modifié"""
output = io.BytesIO()
with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
# Copier tous les fichiers non modifiés
for file in original_zip.infolist():
if file.filename != 'word/document.xml':
new_zip.writestr(file, original_zip.read(file.filename))
# Ajouter le document.xml modifié
xml_str = etree.tostring(
modified_root,
xml_declaration=True,
encoding='UTF-8',
pretty_print=True
)
new_zip.writestr('word/document.xml', xml_str)
output.seek(0)
return output.getvalue()
def docx_to_txt(doc_id: str, url: str):
docx_zip = get_docx_archive(url)
root = parse_document_xml(docx_zip)
clean_document_xml(root)
modified_bytes = create_modified_docx(docx_zip, root)
input_path = f"/tmp/{doc_id}_cleaned.docx"
output_path = f"/tmp/{doc_id}_cleaned.txt"
with open(input_path, "wb") as f:
f.write(modified_bytes)
subprocess.run([
"libreoffice",
"--headless",
"--convert-to", "txt",
"--outdir", "/tmp",
input_path
], check=True)
with open(output_path, "r", encoding="utf-8") as f:
txt_data = [line.strip() for line in f if line.strip()]
os.remove(input_path)
os.remove(output_path)
return txt_data
@app.get("/")
def render_page():
return FileResponse("index.html")
@app.post("/get_meetings", response_model=MeetingsResponse)
def get_meetings(req: MeetingsRequest):
working_group = req.working_group
tsg = re.sub(r"\d+", "", working_group)
wg_number = re.search(r"\d", working_group).group(0)
url = "https://www.3gpp.org/ftp/tsg_" + tsg
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
meeting_folders = []
all_meetings = []
wg_folders = [item.get_text() for item in soup.select("tr td a")]
selected_folder = None
for folder in wg_folders:
if str(wg_number) in folder:
selected_folder = folder
break
url += "/" + selected_folder
if selected_folder:
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text().startswith("TSG")]
all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace("-", " ") for meeting in meeting_folders]
return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))
@app.post("/get_dataframe", response_model=DataResponse)
def get_change_request_dataframe(req: DataRequest):
working_group = req.working_group
tsg = re.sub(r"\d+", "", working_group)
wg_number = re.search(r"\d", working_group).group(0)
url = "https://www.3gpp.org/ftp/tsg_" + tsg
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
wg_folders = [item.get_text() for item in soup.select("tr td a")]
selected_folder = None
for folder in wg_folders:
if str(wg_number) in folder:
selected_folder = folder
break
url += "/" + selected_folder + "/" + req.meeting + "/docs"
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
files = [item.get_text() for item in soup.select("tr td a") if item.get_text().endswith(".xlsx")]
def gen_url(tdoc: str):
return f"{url}/{tdoc}.zip"
df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)
df = filtered_df.fillna("")
return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))
@app.post("/generate_requirements", response_model=RequirementsResponse)
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
documents = req.documents
n_docs = len(documents)
async def process_document(doc):
doc_id = doc.document
url = doc.url
try:
full = "\n".join(docx_to_txt(doc_id, url))
except Exception as e:
traceback.print_exception(e)
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
try:
model_used = "gemini-v2" # À adapter si fallback activé
async with limiter_mapping[model_used]:
resp_ai = await llm_router.acompletion(
model=model_used,
messages=[{"role":"user","content": f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found."}],
response_format=RequirementsResponse
)
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
except Exception as e:
if "rate limit" in str(e).lower():
try:
model_used = "gemini-v2" # À adapter si fallback activé
async with limiter_mapping[model_used]:
resp_ai = await llm_router.acompletion(
model=model_used,
messages=[{"role":"user","content": f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found."}],
response_format=RequirementsResponse
)
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
except Exception as fallback_e:
traceback.print_exception(fallback_e)
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
else:
traceback.print_exception(e)
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
async def process_batch(batch):
results = await asyncio.gather(*(process_document(doc) for doc in batch))
return [item for sublist in results for item in sublist]
all_requirements = []
if n_docs <= 30:
batch_results = await process_batch(documents)
all_requirements.extend(batch_results)
else:
batch_size = 30
batches = [documents[i:i + batch_size] for i in range(0, n_docs, batch_size)]
for i, batch in enumerate(batches):
batch_results = await process_batch(batch)
all_requirements.extend(batch_results)
if i < len(batches) - 1:
background_tasks.add_task(asyncio.sleep, 60)
return RequirementsResponse(requirements=all_requirements)
@app.post("/get_reqs_from_query", response_model=ReqSearchResponse)
def find_requirements_from_problem_description(req: ReqSearchRequest):
requirements = req.requirements
query = req.query
requirements_text = "\n".join([f"[Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements])
print("Called the LLM")
resp_ai = llm_router.completion(
model="gemini-v2",
messages=[{"role":"user","content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of objects each with document ID, context, and requirement for the most relevant requirements that reference or best cover the problem."}],
response_format=ReqSearchResponse
)
print("Answered")
return ReqSearchResponse.model_validate_json(resp_ai.choices[0].message.content) |