Spaces:
Runtime error
Runtime error
File size: 1,203 Bytes
106e5ae 013ca27 6c477d3 013ca27 6c477d3 013ca27 3f47019 013ca27 3f47019 013ca27 6c477d3 013ca27 3f47019 106e5ae 6c477d3 106e5ae 013ca27 106e5ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import os
import pandas as pd
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import TextVectorization
df = pd.read_csv(os.path.join('train.csv'))
X = df['comment_text']
columns = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
# # load numpy array from npy file
# from numpy import load
# # load array
# xValues = np.load('forVectorizer.npy', allow_pickle=True)
# SET THE VECTORIZER
#set max features
MAX_FEATURES = 200000
vectorizer = TextVectorization(max_tokens=MAX_FEATURES,
output_sequence_length=1800,
output_mode='int')
vectorizer.adapt(X.values)
model = tf.keras.models.load_model('toxicity.h5')
def score_comment(comment):
vectorized_comment = vectorizer([comment])
results = model.predict(vectorized_comment)
text = ''
for idx, col in enumerate(columns):
text += '{}: {}\n'.format(col, results[0][idx]>0.5)
return text
interface = gr.Interface(fn=score_comment,
inputs=gr.inputs.Textbox(lines=2, placeholder='Comment to score'),
outputs='text')
interface.launch() |