Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,981 Bytes
ad315e1 dab49a2 ad315e1 addc7ac ad315e1 30a186b ad315e1 336c98d 30a186b ad315e1 a632531 468a602 30a186b 468a602 ad315e1 30a186b 4df79ea aaab316 4df79ea 30a186b 4df79ea 30a186b 0511589 4df79ea 468a602 ad315e1 468a602 ad315e1 6ce14dd ad315e1 30a186b ad315e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import spaces
import yaml
import random
import argparse
import os
import torch
import librosa
from tqdm import tqdm
from diffusers import DDIMScheduler
from solospeech.model.solospeech.conditioners import SoloSpeech_TSE
from solospeech.model.solospeech.conditioners import SoloSpeech_TSR
from solospeech.scripts.solospeech.utils import save_audio
import shutil
from solospeech.vae_modules.autoencoder_wrapper import Autoencoder
import pandas as pd
from speechbrain.pretrained.interfaces import Pretrained
from solospeech.corrector.fastgeco.model import ScoreModel
from solospeech.corrector.geco.util.other import pad_spec
from huggingface_hub import snapshot_download
import time
class Encoder(Pretrained):
MODULES_NEEDED = [
"compute_features",
"mean_var_norm",
"embedding_model"
]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def encode_batch(self, wavs, wav_lens=None, normalize=False):
# Manage single waveforms in input
if len(wavs.shape) == 1:
wavs = wavs.unsqueeze(0)
# Assign full length if wav_lens is not assigned
if wav_lens is None:
wav_lens = torch.ones(wavs.shape[0], device=self.device)
# Storing waveform in the specified device
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
wavs = wavs.float()
# Computing features and embeddings
feats = self.mods.compute_features(wavs)
feats = self.mods.mean_var_norm(feats, wav_lens)
embeddings = self.mods.embedding_model(feats, wav_lens)
if normalize:
embeddings = self.hparams.mean_var_norm_emb(
embeddings,
torch.ones(embeddings.shape[0], device=self.device)
)
return embeddings
parser = argparse.ArgumentParser()
# pre-trained model path
parser.add_argument('--eta', type=int, default=0)
parser.add_argument("--num_infer_steps", type=int, default=200)
parser.add_argument('--sample-rate', type=int, default=16000)
# random seed
parser.add_argument('--random-seed', type=int, default=42, help="Fixed seed")
args = parser.parse_args()
print("Downloading model from Huggingface...")
local_dir = snapshot_download(
repo_id="OpenSound/SoloSpeech-models"
)
args.tse_config = os.path.join(local_dir, "config_extractor.yaml")
args.tsr_config = os.path.join(local_dir, "config_tsr.yaml")
args.vae_config = os.path.join(local_dir, "config_compressor.json")
args.autoencoder_path = os.path.join(local_dir, "compressor.ckpt")
args.tse_ckpt = os.path.join(local_dir, "extractor.pt")
args.tsr_ckpt = os.path.join(local_dir, "tsr.pt")
args.geco_ckpt = os.path.join(local_dir, "corrector.ckpt")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
# load config
print("Loading models...")
with open(args.tse_config, 'r') as fp:
args.tse_config = yaml.safe_load(fp)
with open(args.tsr_config, 'r') as fp:
args.tsr_config = yaml.safe_load(fp)
args.v_prediction = args.tse_config["ddim"]["v_prediction"]
# load compressor
autoencoder = Autoencoder(args.autoencoder_path, args.vae_config, 'stft_vae', quantization_first=True)
autoencoder.eval()
autoencoder.to(device)
# load extractor
tse_model = SoloSpeech_TSE(
args.tse_config['diffwrap']['UDiT'],
args.tse_config['diffwrap']['ViT'],
).to(device)
tse_model.load_state_dict(torch.load(args.tse_ckpt)['model'])
tse_model.eval()
# load tsr model
tsr_model = SoloSpeech_TSR(
args.tsr_config['diffwrap']['UDiT']
).to(device)
tsr_model.load_state_dict(torch.load(args.tsr_ckpt)['model'])
tsr_model.eval()
# load corrector
geco_model = ScoreModel.load_from_checkpoint(
args.geco_ckpt,
batch_size=1, num_workers=0, kwargs=dict(gpu=False)
)
geco_model.eval(no_ema=False)
geco_model.cuda()
# load sid model
ecapatdnn_model = Encoder.from_hparams(source="yangwang825/ecapa-tdnn-vox2")
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
# load diffusion tools
noise_scheduler = DDIMScheduler(**args.tse_config["ddim"]['diffusers'])
# these steps reset dtype of noise_scheduler params
latents = torch.randn((1, 128, 128),
device=device)
noise = torch.randn(latents.shape).to(device)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps,
(noise.shape[0],),
device=latents.device).long()
_ = noise_scheduler.add_noise(latents, noise, timesteps)
@spaces.GPU
def sample_diffusion(tse_model, tsr_model, autoencoder, std, scheduler, device,
mixture=None, reference=None, lengths=None, reference_lengths=None,
ddim_steps=50, eta=0, seed=2025
):
with torch.no_grad():
generator = torch.Generator(device=device).manual_seed(seed)
scheduler.set_timesteps(ddim_steps)
tse_pred = torch.randn(mixture.shape, generator=generator, device=device)
tsr_pred = torch.randn(mixture.shape, generator=generator, device=device)
for t in scheduler.timesteps:
tse_pred = scheduler.scale_model_input(tse_pred, t)
model_output, _ = tse_model(
x=tse_pred,
timesteps=t,
mixture=mixture,
reference=reference,
x_len=lengths,
ref_len=reference_lengths
)
tse_pred = scheduler.step(model_output=model_output, timestep=t, sample=tse_pred,
eta=eta, generator=generator).prev_sample
for t in scheduler.timesteps:
tsr_pred = scheduler.scale_model_input(tsr_pred, t)
model_output, _ = tsr_model(
x=tsr_pred,
timesteps=t,
mixture=mixture,
reference=tse_pred,
x_len=lengths,
)
tsr_pred = scheduler.step(model_output=model_output, timestep=t, sample=tsr_pred,
eta=eta, generator=generator).prev_sample
tse_pred = autoencoder(embedding=tse_pred.transpose(2,1), std=std).squeeze(1)
tsr_pred = autoencoder(embedding=tsr_pred.transpose(2,1), std=std).squeeze(1)
return tse_pred, tsr_pred
@spaces.GPU
def tse(test_wav, enroll_wav):
print("Start Extraction...")
start_time = time.time()
mixture, _ = librosa.load(test_wav, sr=16000)
reference, _ = librosa.load(enroll_wav, sr=16000)
reference_wav = reference
reference = torch.tensor(reference).unsqueeze(0).to(device)
with torch.no_grad():
# compressor
reference, _ = autoencoder(audio=reference.unsqueeze(1))
reference_lengths = torch.LongTensor([reference.shape[-1]]).to(device)
mixture_input = torch.tensor(mixture).unsqueeze(0).to(device)
mixture_wav = mixture_input
mixture_input, std = autoencoder(audio=mixture_input.unsqueeze(1))
lengths = torch.LongTensor([mixture_input.shape[-1]]).to(device)
# extractor
tse_pred, tsr_pred = sample_diffusion(tse_model, tsr_model, autoencoder, std, noise_scheduler, device, mixture_input.transpose(2,1), reference.transpose(2,1), lengths, reference_lengths, ddim_steps=args.num_infer_steps, eta=args.eta, seed=args.random_seed)
ecapatdnn_embedding1 = ecapatdnn_model.encode_batch(tse_pred.squeeze()).squeeze()
ecapatdnn_embedding2 = ecapatdnn_model.encode_batch(tsr_pred.squeeze()).squeeze()
ecapatdnn_embedding3 = ecapatdnn_model.encode_batch(torch.tensor(reference_wav)).squeeze()
sim1 = cosine_sim(ecapatdnn_embedding1, ecapatdnn_embedding3).item()
sim2 = cosine_sim(ecapatdnn_embedding2, ecapatdnn_embedding3).item()
pred = tse_pred if sim1 > sim2 else tsr_pred
# corrector
min_leng = min(pred.shape[-1], mixture_wav.shape[-1])
x = pred[...,:min_leng]
m = mixture_wav[...,:min_leng]
norm_factor = m.abs().max()
x = x / norm_factor
m = m / norm_factor
X = torch.unsqueeze(geco_model._forward_transform(geco_model._stft(x.cuda())), 0)
X = pad_spec(X)
M = torch.unsqueeze(geco_model._forward_transform(geco_model._stft(m.cuda())), 0)
M = pad_spec(M)
timesteps = torch.linspace(0.5, 0.03, 1, device=M.device)
std = geco_model.sde._std(0.5*torch.ones((M.shape[0],), device=M.device))
z = torch.randn_like(M)
X_t = M + z * std[:, None, None, None]
for idx in range(len(timesteps)):
t = timesteps[idx]
if idx != len(timesteps) - 1:
dt = t - timesteps[idx+1]
else:
dt = timesteps[-1]
with torch.no_grad():
f, g = geco_model.sde.sde(X_t, t, M)
vec_t = torch.ones(M.shape[0], device=M.device) * t
mean_x_tm1 = X_t - (f - g**2*geco_model.forward(X_t, vec_t, M, X, vec_t[:,None,None,None]))*dt
if idx == len(timesteps) - 1:
X_t = mean_x_tm1
break
z = torch.randn_like(X)
X_t = mean_x_tm1 + z*g*torch.sqrt(dt)
sample = X_t
sample = sample.squeeze()
x_hat = geco_model.to_audio(sample.squeeze(), min_leng)
x_hat = x_hat * norm_factor / x_hat.abs().max()
x_hat = x_hat.detach().cpu().squeeze().numpy()
end_time = time.time()
audio_len = x_hat.shape[-1] / 16000
rtf = (end_time-start_time)/audio_len
print(f"RTF: {rtf:.4f}")
return (16000, x_hat)
@spaces.GPU
def process_audio(test_wav, enroll_wav):
result = tse(test_wav, enroll_wav)
return result
# List of demo audio files
demo_audio_files = [
("Demo1: Extract male speaker from a mixture of multiple male speakers", "examples/test1.wav", "examples/test1_enroll.wav"),
("Demo2: Extract female speaker from a mixture of multiple female speakers", "examples/test2.wav", "examples/test2_enroll.wav"),
("Demo3: Extract male rapper from music with complex vocals", "examples/test_3_mixture.mp3", "examples/test_3_speaker.mp3"),
]
def update_audio_input(choice):
return choice
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# SoloSpeech: A Precise and High-Fidelity Target Speech Extractor
👋 Introduction: Extract the target voice from mixture speech given an enrollment speech.
💡 To extract sound effects or music from audio, try using [SoloAudio](https://huggingface.co/spaces/OpenSound/SoloAudio).
🔗 Learn more about this project on the [🎯SoloSpeech Repo](https://github.com/WangHelin1997/SoloSpeech/).
""")
with gr.Tab("Target Speech Extraction"):
with gr.Row():
mixture_input = gr.Audio(label="Upload Mixture Audio",
type="filepath",
value="examples/test1.wav")
# gr.Markdown("**Note:** Upload a short clip with only the target speaker. Some non-speech noise is fine.")
with gr.Row(equal_height=True):
enroll_input = gr.Audio(label="Upload Enrollment/Speaker Audio",
type="filepath",
value="examples/test1_enroll.wav",
)
with gr.Row():
extract_button = gr.Button("Extract", variant="primary")
# extract_button = gr.Button("Extract", scale=1)
with gr.Row():
result = gr.Audio(label="Extracted Speech", type="numpy")
with gr.Row(equal_height=True):
demo_selector = gr.Dropdown(
label="Select Test Demo",
choices=[name for name, _, _ in demo_audio_files],
value="Demo1: Extract male speaker from a mixture of multiple male speakers"
)
# Update audio inputs when selecting from dropdown
def update_audio_inputs(choice):
for name, mixture_path, enroll_path in demo_audio_files:
if name == choice:
return mixture_path, enroll_path
return None, None
demo_selector.change(
fn=update_audio_inputs,
inputs=demo_selector,
outputs=[mixture_input, enroll_input]
)
extract_button.click(
fn=process_audio,
inputs=[mixture_input, enroll_input],
outputs=[result]
)
# Launch the Gradio demo
demo.launch() |