File size: 7,048 Bytes
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torchaudio
import torch.nn.functional as F
from pesq import pesq
from pystoi import stoi

from .other import si_sdr, pad_spec

# Settings
sr = 8000
snr = 0.5
N = 30
corrector_steps = 1


def evaluate_model(model, num_eval_files):

    clean_files = model.data_module.valid_set.clean_files
    noisy_files = model.data_module.valid_set.noisy_files
    mixture_files = model.data_module.valid_set.mixture_files
    
    # Select test files uniformly accros validation files
    total_num_files = len(clean_files)
    indices = torch.linspace(0, total_num_files-1, num_eval_files, dtype=torch.int)
    clean_files = list(clean_files[i] for i in indices)
    noisy_files = list(noisy_files[i] for i in indices)
    mixture_files = list(mixture_files[i] for i in indices)

    _pesq = 0
    _si_sdr = 0
    _estoi = 0
    # iterate over files
    for (clean_file, noisy_file, mixture_file) in zip(clean_files, noisy_files, mixture_files):
        # Load wavs
        x, sr_ = torchaudio.load(clean_file)
        if sr_ != sr:
            x = torchaudio.transforms.Resample(sr_, sr)(x)
        y, sr_ = torchaudio.load(noisy_file) 
        if sr_ != sr:
            y = torchaudio.transforms.Resample(sr_, sr)(y)
        m, sr_ = torchaudio.load(mixture_file) 
        if sr_ != sr:
            m = torchaudio.transforms.Resample(sr_, sr)(m)
        
        min_leng = min(x.shape[-1],y.shape[-1],m.shape[-1])
        x = x[...,:min_leng]
        y = y[...,:min_leng]
        m = m[...,:min_leng]
        
        T_orig = x.size(1)   

        # Normalize per utterance
        norm_factor = y.abs().max()
        y = y / norm_factor
        m = m / norm_factor

        # Prepare DNN input
        Y = torch.unsqueeze(model._forward_transform(model._stft(y.cuda())), 0)
        Y = pad_spec(Y)
        
        M = torch.unsqueeze(model._forward_transform(model._stft(m.cuda())), 0)
        M = pad_spec(M)

        y = y * norm_factor

        # print(x.shape,y.shape,m.shape,Y.shape,M.shape)
        # Reverse sampling
        sampler = model.get_pc_sampler(
            'reverse_diffusion', 'ald', Y.cuda(), M.cuda(), N=N, 
            corrector_steps=corrector_steps, snr=snr)
        sample, _ = sampler()

        sample = sample.squeeze()

   
        x_hat = model.to_audio(sample.squeeze(), T_orig)
        x_hat = x_hat * norm_factor

        x_hat = x_hat.squeeze().cpu().numpy()
        x = x.squeeze().cpu().numpy()
        y = y.squeeze().cpu().numpy()

        _si_sdr += si_sdr(x, x_hat)
        _pesq += pesq(sr, x, x_hat, 'nb') 
        _estoi += stoi(x, x_hat, sr, extended=True)
        
    return _pesq/num_eval_files, _si_sdr/num_eval_files, _estoi/num_eval_files


def evaluate_model2(model, num_eval_files, inference_N, inference_start=0.5):

    
    N = inference_N
    reverse_start_time = inference_start
    
    clean_files = model.data_module.valid_set.clean_files
    noisy_files = model.data_module.valid_set.noisy_files
    mixture_files = model.data_module.valid_set.mixture_files
    
    # Select test files uniformly accros validation files
    total_num_files = len(clean_files)
    indices = torch.linspace(0, total_num_files-1, num_eval_files, dtype=torch.int)
    clean_files = list(clean_files[i] for i in indices)
    noisy_files = list(noisy_files[i] for i in indices)
    mixture_files = list(mixture_files[i] for i in indices)



    _pesq = 0
    _si_sdr = 0
    _estoi = 0
    # iterate over files
    for (clean_file, noisy_file, mixture_file) in zip(clean_files, noisy_files, mixture_files):
        # Load wavs
        x, sr_ = torchaudio.load(clean_file)
        if sr_ != sr:
            x = torchaudio.transforms.Resample(sr_, sr)(x)
        y, sr_ = torchaudio.load(noisy_file) 
        if sr_ != sr:
            y = torchaudio.transforms.Resample(sr_, sr)(y)
        m, sr_ = torchaudio.load(mixture_file) 
        if sr_ != sr:
            m = torchaudio.transforms.Resample(sr_, sr)(m)
            
        #requires only for BWE as the dataset has different length of clean and noisy files
        min_leng = min(x.shape[-1],y.shape[-1],m.shape[-1])
        x = x[...,:min_leng]
        y = y[...,:min_leng]
        m = m[...,:min_leng]

        T_orig = x.size(1)   

        # Normalize per utterance
        norm_factor = y.abs().max()
        y = y / norm_factor
        x = x / norm_factor
        m = m / norm_factor

        # Prepare DNN input
        Y = torch.unsqueeze(model._forward_transform(model._stft(y.cuda())), 0)
        Y = pad_spec(Y)
        
        X = torch.unsqueeze(model._forward_transform(model._stft(x.cuda())), 0)
        X = pad_spec(X)
        
        M = torch.unsqueeze(model._forward_transform(model._stft(m.cuda())), 0)
        M = pad_spec(M)
        
        
        y = y * norm_factor
        x = x * norm_factor
        
        x = x.squeeze().cpu().numpy()
        y = y.squeeze().cpu().numpy()

        total_loss = 0
        timesteps = torch.linspace(reverse_start_time, 0.03, N, device=Y.device)
        #prior sampling starting from reverse_start_time 
        std = model.sde._std(reverse_start_time*torch.ones((Y.shape[0],), device=Y.device))
        z = torch.randn_like(Y)
        X_t = Y + z * std[:, None, None, None]
        
        #reverse steps by Euler Maruyama
        for i in range(len(timesteps)):
            t = timesteps[i]
            if i != len(timesteps) - 1:
                dt = t - timesteps[i+1]
            else:
                dt = timesteps[-1]
            with torch.no_grad():
                #take Euler step here
                f, g = model.sde.sde(X_t, t, Y)
                vec_t = torch.ones(Y.shape[0], device=Y.device) * t 
                score = model.forward(X_t, vec_t, Y, M, vec_t[:,None,None,None])
                mean_x_tm1 = X_t - (f - g**2*score)*dt #mean of x t minus 1 = mu(x_{t-1})
                if i == len(timesteps) - 1: #output
                    X_t = mean_x_tm1 
                    break
                z = torch.randn_like(X) 

                X_t = mean_x_tm1 + z*g*torch.sqrt(dt)

        sample = X_t
        sample = sample.squeeze()
        x_hat = model.to_audio(sample.squeeze(), T_orig)
        x_hat = x_hat * norm_factor
        x_hat = x_hat.squeeze().cpu().numpy()
        _si_sdr += si_sdr(x, x_hat)
        _pesq += pesq(sr, x, x_hat, 'nb') 
        _estoi += stoi(x, x_hat, sr, extended=True)

    return _pesq/num_eval_files, _si_sdr/num_eval_files, _estoi/num_eval_files, total_loss/num_eval_files


def convert_to_audio(X, deemp, T_orig, model, norm_factor):
    
    sample = X

    sample = sample.squeeze()
    if len(sample.shape)==4:
        sample = sample*deemp[None, None, :, None].to(device=sample.device)
    elif len(sample.shape)==3:
        sample = sample*deemp[None, :, None].to(device=sample.device)
    else:
        sample = sample*deemp[:, None].to(device=sample.device)

    x_hat = model.to_audio(sample.squeeze(), T_orig)
    x_hat = x_hat * norm_factor

    x_hat = x_hat.squeeze().cpu().numpy()
    return x_hat