File size: 6,932 Bytes
8207a5c
d4c980e
 
 
 
 
 
 
 
8207a5c
d4c980e
917235e
 
 
8207a5c
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917235e
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917235e
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0c1420
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import spaces
import numpy as np
import torch
from fastgeco.model import ScoreModel
from geco.util.other import pad_spec
import os
import torchaudio
from speechbrain.lobes.models.dual_path import Encoder, SBTransformerBlock, SBTransformerBlock, Dual_Path_Model, Decoder

device = 'cuda' if torch.cuda.is_available() else 'cpu'
sample_rate = 8000
num_spks = 2
ckpt_path = 'ckpts/'

def load_sepformer(ckpt_path):
    encoder = Encoder(
        kernel_size=160, 
        out_channels=256, 
        in_channels=1
    )
    SBtfintra = SBTransformerBlock(
        num_layers=8,
        d_model=256,
        nhead=8,
        d_ffn=1024,
        dropout=0,
        use_positional_encoding=True,
        norm_before=True,
    )
    SBtfinter = SBTransformerBlock(
        num_layers=8,
        d_model=256,
        nhead=8,
        d_ffn=1024,
        dropout=0,
        use_positional_encoding=True,
        norm_before=True,
    )
    masknet = Dual_Path_Model(
        num_spks=num_spks,
        in_channels=256,
        out_channels=256,
        num_layers=2,
        K=250,
        intra_model=SBtfintra,
        inter_model=SBtfinter,
        norm='ln',
        linear_layer_after_inter_intra=False,
        skip_around_intra=True,
    )
    decoder = Decoder(
        in_channels=256,
        out_channels=1,
        kernel_size=160,
        stride=80,
        bias=False,
    )

    encoder_weights = torch.load(os.path.join(ckpt_path, 'encoder.ckpt'))
    encoder.load_state_dict(encoder_weights)
    masknet_weights = torch.load(os.path.join(ckpt_path, 'masknet.ckpt'))
    masknet.load_state_dict(masknet_weights)
    decoder_weights = torch.load(os.path.join(ckpt_path, 'decoder.ckpt'))
    decoder.load_state_dict(decoder_weights)
    encoder = encoder.eval().to(device)
    masknet = masknet.eval().to(device)
    decoder = decoder.eval().to(device)
    return encoder, masknet, decoder

def load_fastgeco(ckpt_path):
    checkpoint_file = os.path.join(ckpt_path, 'fastgeco.ckpt')
    model = ScoreModel.load_from_checkpoint(
        checkpoint_file,
        batch_size=1, num_workers=0, kwargs=dict(gpu=False)
    )
    model.eval(no_ema=False)
    model.to(device)
    return model

encoder, masknet, decoder = load_sepformer(ckpt_path)
fastgeco_model = load_fastgeco(ckpt_path)


@spaces.GPU
def separate(test_file, encoder, masknet, decoder):
    with torch.no_grad():
        print('Process SepFormer...')
        mix, fs_file = torchaudio.load(test_file)
        mix = mix.to(device)
        fs_model = sample_rate

        # resample the data if needed
        if fs_file != fs_model:
            print(
                "Resampling the audio from {} Hz to {} Hz".format(
                    fs_file, fs_model
                )
            )
            tf = torchaudio.transforms.Resample(
                orig_freq=fs_file, new_freq=fs_model
            ).to(device)
            mix = mix.mean(dim=0, keepdim=True)
            mix = tf(mix)

        mix = mix.to(device)

        # Separation
        mix_w = encoder(mix)
        est_mask = masknet(mix_w)
        mix_w = torch.stack([mix_w] * num_spks)
        sep_h = mix_w * est_mask

        # Decoding
        est_sources = torch.cat(
            [
                decoder(sep_h[i]).unsqueeze(-1)
                for i in range(num_spks)
            ],
            dim=-1,
        )
        est_sources = (
            est_sources / est_sources.abs().max(dim=1, keepdim=True)[0]
        ).squeeze()

        return est_sources, mix


@spaces.GPU
def correct(model, est_sources, mix):
    with torch.no_grad():
        print('Process Fast-Geco...')
        N = 1
        reverse_starting_point = 0.5
        output = []
        for idx in range(num_spks):
            y = est_sources[:, idx].unsqueeze(0) # noisy
            m = mix
            min_leng = min(y.shape[-1],m.shape[-1])
            y = y[...,:min_leng]
            m = m[...,:min_leng]
            T_orig = y.size(1)   

            norm_factor = y.abs().max()
            y = y / norm_factor
            m = m / norm_factor 
            Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(device))), 0)
            Y = pad_spec(Y)
            M = torch.unsqueeze(model._forward_transform(model._stft(m.to(device))), 0)
            M = pad_spec(M)

            timesteps = torch.linspace(reverse_starting_point, 0.03, N, device=Y.device)
            std = model.sde._std(reverse_starting_point*torch.ones((Y.shape[0],), device=Y.device))
            z = torch.randn_like(Y)
            X_t = Y + z * std[:, None, None, None]
            
            t = timesteps[0]
            dt = timesteps[-1]
            f, g = model.sde.sde(X_t, t, Y)
            vec_t = torch.ones(Y.shape[0], device=Y.device) * t 
            mean_x_tm1 = X_t - (f - g**2*model.forward(X_t, vec_t, Y, M, vec_t[:,None,None,None]))*dt #mean of x t minus 1 = mu(x_{t-1})
            sample = mean_x_tm1 
            sample = sample.squeeze()
            x_hat = model.to_audio(sample.squeeze(), T_orig)
            x_hat = x_hat * norm_factor
            new_norm_factor = x_hat.abs().max()
            x_hat = x_hat / new_norm_factor
            x_hat = x_hat.squeeze().cpu().numpy()
            output.append(x_hat)
    return (output[0], sample_rate), (output[1], sample_rate)

@spaces.GPU
def process_audio(test_file):
    result, mix = separate(test_file, encoder, masknet, decoder)
    audio1, audio2 = correct(fastgeco_model, result, mix)
    return audio1, audio2


# CSS styling (optional)
css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}
"""

# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
            # Fast-GeCo: Noise-robust Speech Separation with Fast Generative Correction
            Separate the noisy mixture speech with a generative correction method, only support 2 speakers now.
            
            Learn more about 🟣**Fast-GeCo** on the [Fast-GeCo Repo](https://github.com/WangHelin1997/Fast-GeCo/).
        """)

        with gr.Tab("Speech Separation"):
            # Input: Upload audio file
            with gr.Row():
                gt_file_input = gr.Audio(label="Upload Audio to Separate", type="filepath", value="demo/item0_mix.wav")
                button = gr.Button("Generate", scale=1)
            
            # Output Component for edited audio
            with gr.Row():
                result1 = gr.Audio(label="Separated Audio 1", type="numpy")
                result2 = gr.Audio(label="Separated Audio 2", type="numpy")

            # Define the trigger and input-output linking
            button.click(
                fn=process_audio,
                inputs=[
                    gt_file_input,
                ],
                outputs=[result1, result2]
            )

    # Launch the Gradio demo
    demo.launch()