Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,638 Bytes
b9d6819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import torch
import math
import numpy as np
from torch import nn
from torch.nn import functional as F
from torchaudio import transforms as T
from alias_free_torch import Activation1d
from .nn.layers import WNConv1d, WNConvTranspose1d
from typing import Literal, Dict, Any
# from .inference.sampling import sample
from .utils import prepare_audio
from .blocks import SnakeBeta
from .bottleneck import Bottleneck, DiscreteBottleneck
from .factory import create_pretransform_from_config, create_bottleneck_from_config
from .pretransforms import Pretransform
def checkpoint(function, *args, **kwargs):
kwargs.setdefault("use_reentrant", False)
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
if activation == "elu":
act = nn.ELU()
elif activation == "snake":
act = SnakeBeta(channels)
elif activation == "none":
act = nn.Identity()
else:
raise ValueError(f"Unknown activation {activation}")
if antialias:
act = Activation1d(act)
return act
class ResidualUnit(nn.Module):
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
super().__init__()
self.dilation = dilation
padding = (dilation * (7-1)) // 2
self.layers = nn.Sequential(
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
WNConv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=7, dilation=dilation, padding=padding),
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
WNConv1d(in_channels=out_channels, out_channels=out_channels,
kernel_size=1)
)
def forward(self, x):
res = x
#x = checkpoint(self.layers, x)
x = self.layers(x)
return x + res
class EncoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
super().__init__()
self.layers = nn.Sequential(
ResidualUnit(in_channels=in_channels,
out_channels=in_channels, dilation=1, use_snake=use_snake),
ResidualUnit(in_channels=in_channels,
out_channels=in_channels, dilation=3, use_snake=use_snake),
ResidualUnit(in_channels=in_channels,
out_channels=in_channels, dilation=9, use_snake=use_snake),
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
WNConv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
)
def forward(self, x):
return self.layers(x)
class DecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
super().__init__()
if use_nearest_upsample:
upsample_layer = nn.Sequential(
nn.Upsample(scale_factor=stride, mode="nearest"),
WNConv1d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=2*stride,
stride=1,
bias=False,
padding='same')
)
else:
upsample_layer = WNConvTranspose1d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
self.layers = nn.Sequential(
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
upsample_layer,
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
dilation=1, use_snake=use_snake),
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
dilation=3, use_snake=use_snake),
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
dilation=9, use_snake=use_snake),
)
def forward(self, x):
return self.layers(x)
class OobleckEncoder(nn.Module):
def __init__(self,
in_channels=2,
channels=128,
latent_dim=32,
c_mults = [1, 2, 4, 8],
strides = [2, 4, 8, 8],
use_snake=False,
antialias_activation=False
):
super().__init__()
c_mults = [1] + c_mults
self.depth = len(c_mults)
layers = [
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
]
for i in range(self.depth-1):
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
layers += [
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
]
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class OobleckDecoder(nn.Module):
def __init__(self,
out_channels=2,
channels=128,
latent_dim=32,
c_mults = [1, 2, 4, 8],
strides = [2, 4, 8, 8],
use_snake=False,
antialias_activation=False,
use_nearest_upsample=False,
final_tanh=True):
super().__init__()
c_mults = [1] + c_mults
self.depth = len(c_mults)
layers = [
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
]
for i in range(self.depth-1, 0, -1):
layers += [DecoderBlock(
in_channels=c_mults[i]*channels,
out_channels=c_mults[i-1]*channels,
stride=strides[i-1],
use_snake=use_snake,
antialias_activation=antialias_activation,
use_nearest_upsample=use_nearest_upsample
)
]
layers += [
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
nn.Tanh() if final_tanh else nn.Identity()
]
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class DACEncoderWrapper(nn.Module):
def __init__(self, in_channels=1, **kwargs):
super().__init__()
from dac.model.dac import Encoder as DACEncoder
latent_dim = kwargs.pop("latent_dim", None)
encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"]))
self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs)
self.latent_dim = latent_dim
# Latent-dim support was added to DAC after this was first written, and implemented differently, so this is for backwards compatibility
self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity()
if in_channels != 1:
self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3)
def forward(self, x):
x = self.encoder(x)
x = self.proj_out(x)
return x
class DACDecoderWrapper(nn.Module):
def __init__(self, latent_dim, out_channels=1, **kwargs):
super().__init__()
from dac.model.dac import Decoder as DACDecoder
self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels)
self.latent_dim = latent_dim
def forward(self, x):
return self.decoder(x)
class AudioAutoencoder(nn.Module):
def __init__(
self,
encoder,
decoder,
latent_dim,
downsampling_ratio,
sample_rate,
io_channels=2,
bottleneck: Bottleneck = None,
pretransform: Pretransform = None,
in_channels = None,
out_channels = None,
soft_clip = False
):
super().__init__()
self.downsampling_ratio = downsampling_ratio
self.sample_rate = sample_rate
self.latent_dim = latent_dim
self.io_channels = io_channels
self.in_channels = io_channels
self.out_channels = io_channels
self.min_length = self.downsampling_ratio
if in_channels is not None:
self.in_channels = in_channels
if out_channels is not None:
self.out_channels = out_channels
self.bottleneck = bottleneck
self.encoder = encoder
self.decoder = decoder
self.pretransform = pretransform
self.soft_clip = soft_clip
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete
def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs):
info = {}
if self.pretransform is not None and not skip_pretransform:
if self.pretransform.enable_grad:
if iterate_batch:
audios = []
for i in range(audio.shape[0]):
audios.append(self.pretransform.encode(audio[i:i+1]))
audio = torch.cat(audios, dim=0)
else:
audio = self.pretransform.encode(audio)
else:
with torch.no_grad():
if iterate_batch:
audios = []
for i in range(audio.shape[0]):
audios.append(self.pretransform.encode(audio[i:i+1]))
audio = torch.cat(audios, dim=0)
else:
audio = self.pretransform.encode(audio)
if self.encoder is not None:
if iterate_batch:
latents = []
for i in range(audio.shape[0]):
latents.append(self.encoder(audio[i:i+1]))
latents = torch.cat(latents, dim=0)
else:
latents = self.encoder(audio)
else:
latents = audio
if self.bottleneck is not None:
# TODO: Add iterate batch logic, needs to merge the info dicts
latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs)
info.update(bottleneck_info)
if return_info:
return latents, info
return latents
def decode(self, latents, iterate_batch=False, **kwargs):
if self.bottleneck is not None:
if iterate_batch:
decoded = []
for i in range(latents.shape[0]):
decoded.append(self.bottleneck.decode(latents[i:i+1]))
decoded = torch.cat(decoded, dim=0)
else:
latents = self.bottleneck.decode(latents)
if iterate_batch:
decoded = []
for i in range(latents.shape[0]):
decoded.append(self.decoder(latents[i:i+1]))
decoded = torch.cat(decoded, dim=0)
else:
decoded = self.decoder(latents, **kwargs)
if self.pretransform is not None:
if self.pretransform.enable_grad:
if iterate_batch:
decodeds = []
for i in range(decoded.shape[0]):
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
decoded = torch.cat(decodeds, dim=0)
else:
decoded = self.pretransform.decode(decoded)
else:
with torch.no_grad():
if iterate_batch:
decodeds = []
for i in range(latents.shape[0]):
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
decoded = torch.cat(decodeds, dim=0)
else:
decoded = self.pretransform.decode(decoded)
if self.soft_clip:
decoded = torch.tanh(decoded)
return decoded
def decode_tokens(self, tokens, **kwargs):
'''
Decode discrete tokens to audio
Only works with discrete autoencoders
'''
assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders"
latents = self.bottleneck.decode_tokens(tokens, **kwargs)
return self.decode(latents, **kwargs)
def preprocess_audio_for_encoder(self, audio, in_sr):
'''
Preprocess single audio tensor (Channels x Length) to be compatible with the encoder.
If the model is mono, stereo audio will be converted to mono.
Audio will be silence-padded to be a multiple of the model's downsampling ratio.
Audio will be resampled to the model's sample rate.
The output will have batch size 1 and be shape (1 x Channels x Length)
'''
return self.preprocess_audio_list_for_encoder([audio], [in_sr])
def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list):
'''
Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder.
The audio in that list can be of different lengths and channels.
in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio.
All audio will be resampled to the model's sample rate.
Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio.
If the model is mono, all audio will be converted to mono.
The output will be a tensor of shape (Batch x Channels x Length)
'''
batch_size = len(audio_list)
if isinstance(in_sr_list, int):
in_sr_list = [in_sr_list]*batch_size
assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list"
new_audio = []
max_length = 0
# resample & find the max length
for i in range(batch_size):
audio = audio_list[i]
in_sr = in_sr_list[i]
if len(audio.shape) == 3 and audio.shape[0] == 1:
# batchsize 1 was given by accident. Just squeeze it.
audio = audio.squeeze(0)
elif len(audio.shape) == 1:
# Mono signal, channel dimension is missing, unsqueeze it in
audio = audio.unsqueeze(0)
assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension"
# Resample audio
if in_sr != self.sample_rate:
resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device)
audio = resample_tf(audio)
new_audio.append(audio)
if audio.shape[-1] > max_length:
max_length = audio.shape[-1]
# Pad every audio to the same length, multiple of model's downsampling ratio
padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length
for i in range(batch_size):
# Pad it & if necessary, mixdown/duplicate stereo/mono channels to support model
new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length,
target_channels=self.in_channels, device=new_audio[i].device).squeeze(0)
# convert to tensor
return torch.stack(new_audio)
def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs):
'''
Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder.
If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap.
Overlap and chunk_size params are both measured in number of latents (not audio samples)
# and therefore you likely could use the same values with decode_audio.
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
Every autoencoder will have a different receptive field size, and thus ideal overlap.
You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff.
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
Smaller chunk_size uses less memory, but more compute.
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
'''
if not chunked:
# default behavior. Encode the entire audio in parallel
return self.encode(audio, **kwargs)
else:
# CHUNKED ENCODING
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
samples_per_latent = self.downsampling_ratio
total_size = audio.shape[2] # in samples
batch_size = audio.shape[0]
chunk_size *= samples_per_latent # converting metric in latents to samples
overlap *= samples_per_latent # converting metric in latents to samples
hop_size = chunk_size - overlap
chunks = []
for i in range(0, total_size - chunk_size + 1, hop_size):
chunk = audio[:,:,i:i+chunk_size]
chunks.append(chunk)
if i+chunk_size != total_size:
# Final chunk
chunk = audio[:,:,-chunk_size:]
chunks.append(chunk)
chunks = torch.stack(chunks)
num_chunks = chunks.shape[0]
# Note: y_size might be a different value from the latent length used in diffusion training
# because we can encode audio of varying lengths
# However, the audio should've been padded to a multiple of samples_per_latent by now.
y_size = total_size // samples_per_latent
# Create an empty latent, we will populate it with chunks as we encode them
y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device)
for i in range(num_chunks):
x_chunk = chunks[i,:]
# encode the chunk
y_chunk = self.encode(x_chunk)
# figure out where to put the audio along the time domain
if i == num_chunks-1:
# final chunk always goes at the end
t_end = y_size
t_start = t_end - y_chunk.shape[2]
else:
t_start = i * hop_size // samples_per_latent
t_end = t_start + chunk_size // samples_per_latent
# remove the edges of the overlaps
ol = overlap//samples_per_latent//2
chunk_start = 0
chunk_end = y_chunk.shape[2]
if i > 0:
# no overlap for the start of the first chunk
t_start += ol
chunk_start += ol
if i < num_chunks-1:
# no overlap for the end of the last chunk
t_end -= ol
chunk_end -= ol
# paste the chunked audio into our y_final output audio
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
return y_final
def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs):
'''
Decode latents to audio.
If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents.
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
Every autoencoder will have a different receptive field size, and thus ideal overlap.
You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff.
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
Smaller chunk_size uses less memory, but more compute.
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
'''
if not chunked:
# default behavior. Decode the entire latent in parallel
return self.decode(latents, **kwargs)
else:
# chunked decoding
hop_size = chunk_size - overlap
total_size = latents.shape[2]
batch_size = latents.shape[0]
chunks = []
for i in range(0, total_size - chunk_size + 1, hop_size):
chunk = latents[:,:,i:i+chunk_size]
chunks.append(chunk)
if i+chunk_size != total_size:
# Final chunk
chunk = latents[:,:,-chunk_size:]
chunks.append(chunk)
chunks = torch.stack(chunks)
num_chunks = chunks.shape[0]
# samples_per_latent is just the downsampling ratio
samples_per_latent = self.downsampling_ratio
# Create an empty waveform, we will populate it with chunks as decode them
y_size = total_size * samples_per_latent
y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device)
for i in range(num_chunks):
x_chunk = chunks[i,:]
# decode the chunk
y_chunk = self.decode(x_chunk)
# figure out where to put the audio along the time domain
if i == num_chunks-1:
# final chunk always goes at the end
t_end = y_size
t_start = t_end - y_chunk.shape[2]
else:
t_start = i * hop_size * samples_per_latent
t_end = t_start + chunk_size * samples_per_latent
# remove the edges of the overlaps
ol = (overlap//2) * samples_per_latent
chunk_start = 0
chunk_end = y_chunk.shape[2]
if i > 0:
# no overlap for the start of the first chunk
t_start += ol
chunk_start += ol
if i < num_chunks-1:
# no overlap for the end of the last chunk
t_end -= ol
chunk_end -= ol
# paste the chunked audio into our y_final output audio
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
return y_final
# AE factories
def create_encoder_from_config(encoder_config: Dict[str, Any]):
encoder_type = encoder_config.get("type", None)
assert encoder_type is not None, "Encoder type must be specified"
if encoder_type == "oobleck":
encoder = OobleckEncoder(
**encoder_config["config"]
)
elif encoder_type == "seanet":
from encodec.modules import SEANetEncoder
seanet_encoder_config = encoder_config["config"]
#SEANet encoder expects strides in reverse order
seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2])))
encoder = SEANetEncoder(
**seanet_encoder_config
)
elif encoder_type == "dac":
dac_config = encoder_config["config"]
encoder = DACEncoderWrapper(**dac_config)
elif encoder_type == "local_attn":
from .local_attention import TransformerEncoder1D
local_attn_config = encoder_config["config"]
encoder = TransformerEncoder1D(
**local_attn_config
)
else:
raise ValueError(f"Unknown encoder type {encoder_type}")
requires_grad = encoder_config.get("requires_grad", True)
if not requires_grad:
for param in encoder.parameters():
param.requires_grad = False
return encoder
def create_decoder_from_config(decoder_config: Dict[str, Any]):
decoder_type = decoder_config.get("type", None)
assert decoder_type is not None, "Decoder type must be specified"
if decoder_type == "oobleck":
decoder = OobleckDecoder(
**decoder_config["config"]
)
elif decoder_type == "seanet":
from encodec.modules import SEANetDecoder
decoder = SEANetDecoder(
**decoder_config["config"]
)
elif decoder_type == "dac":
dac_config = decoder_config["config"]
decoder = DACDecoderWrapper(**dac_config)
elif decoder_type == "local_attn":
from .local_attention import TransformerDecoder1D
local_attn_config = decoder_config["config"]
decoder = TransformerDecoder1D(
**local_attn_config
)
else:
raise ValueError(f"Unknown decoder type {decoder_type}")
requires_grad = decoder_config.get("requires_grad", True)
if not requires_grad:
for param in decoder.parameters():
param.requires_grad = False
return decoder
def create_autoencoder_from_config(config: Dict[str, Any]):
ae_config = config["model"]
encoder = create_encoder_from_config(ae_config["encoder"])
decoder = create_decoder_from_config(ae_config["decoder"])
bottleneck = ae_config.get("bottleneck", None)
latent_dim = ae_config.get("latent_dim", None)
assert latent_dim is not None, "latent_dim must be specified in model config"
downsampling_ratio = ae_config.get("downsampling_ratio", None)
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
io_channels = ae_config.get("io_channels", None)
assert io_channels is not None, "io_channels must be specified in model config"
sample_rate = config.get("sample_rate", None)
assert sample_rate is not None, "sample_rate must be specified in model config"
in_channels = ae_config.get("in_channels", None)
out_channels = ae_config.get("out_channels", None)
pretransform = ae_config.get("pretransform", None)
if pretransform is not None:
pretransform = create_pretransform_from_config(pretransform, sample_rate)
if bottleneck is not None:
bottleneck = create_bottleneck_from_config(bottleneck)
soft_clip = ae_config["decoder"].get("soft_clip", False)
return AudioAutoencoder(
encoder,
decoder,
io_channels=io_channels,
latent_dim=latent_dim,
downsampling_ratio=downsampling_ratio,
sample_rate=sample_rate,
bottleneck=bottleneck,
pretransform=pretransform,
in_channels=in_channels,
out_channels=out_channels,
soft_clip=soft_clip
) |