File size: 15,860 Bytes
b9d6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import torch
import torch.nn as nn
import torch.utils.checkpoint
import math
from .utils.modules import PatchEmbed, TimestepEmbedder
from .utils.modules import PE_wrapper, RMSNorm
from .blocks import DiTBlock, JointDiTBlock, FinalBlock


class UDiT(nn.Module):
    def __init__(self,

                 img_size=224, patch_size=16, in_chans=3,

                 input_type='2d', out_chans=None,

                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,

                 qkv_bias=False, qk_scale=None, qk_norm=None,

                 act_layer='gelu', norm_layer='layernorm',

                 context_norm=False,

                 use_checkpoint=False,

                 # time fusion ada or token

                 time_fusion='token',

                 ada_lora_rank=None, ada_lora_alpha=None,

                 cls_dim=None,

                 # max length is only used for concat

                 context_dim=768, context_fusion='concat',

                 context_max_length=128, context_pe_method='sinu',

                 pe_method='abs', rope_mode='none',

                 use_conv=True,

                 skip=True, skip_norm=True):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        # input
        self.in_chans = in_chans
        self.input_type = input_type
        if self.input_type == '2d':
            num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
        elif self.input_type == '1d':
            num_patches = img_size // patch_size
        self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans,
                                      embed_dim=embed_dim, input_type=input_type)
        out_chans = in_chans if out_chans is None else out_chans
        self.out_chans = out_chans

        # position embedding
        self.rope = rope_mode
        self.x_pe = PE_wrapper(dim=embed_dim, method=pe_method,
                               length=num_patches)

        print(f'x position embedding: {pe_method}')
        print(f'rope mode: {self.rope}')

        # time embed
        self.time_embed = TimestepEmbedder(embed_dim)
        self.time_fusion = time_fusion
        self.use_adanorm = False

        # cls embed
        if cls_dim is not None:
            self.cls_embed = nn.Sequential(
                nn.Linear(cls_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),)
        else:
            self.cls_embed = None

        # time fusion
        if time_fusion == 'token':
            # put token at the beginning of sequence
            self.extras = 2 if self.cls_embed else 1
            self.time_pe = PE_wrapper(dim=embed_dim, method='abs', length=self.extras)
        elif time_fusion in ['ada', 'ada_single', 'ada_lora', 'ada_lora_bias']:
            self.use_adanorm = True
            # aviod  repetitive silu for each adaln block
            self.time_act = nn.SiLU()
            self.extras = 0
            self.time_ada_final = nn.Linear(embed_dim, 2 * embed_dim, bias=True)
            if time_fusion in ['ada_single', 'ada_lora', 'ada_lora_bias']:
                # shared adaln
                self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
            else:
                self.time_ada = None
        else:
            raise NotImplementedError
        print(f'time fusion mode: {self.time_fusion}')

        # context
        # use a simple projection
        self.use_context = False
        self.context_cross = False
        self.context_max_length = context_max_length
        self.context_fusion = 'none'
        if context_dim is not None:
            self.use_context = True
            self.context_embed = nn.Sequential(
                nn.Linear(context_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),)
            self.context_fusion = context_fusion
            if context_fusion == 'concat' or context_fusion == 'joint':
                self.extras += context_max_length
                self.context_pe = PE_wrapper(dim=embed_dim,
                                             method=context_pe_method,
                                             length=context_max_length)
                # no cross attention layers
                context_dim = None
            elif context_fusion == 'cross':
                self.context_pe = PE_wrapper(dim=embed_dim,
                                             method=context_pe_method,
                                             length=context_max_length)
                self.context_cross = True
                context_dim = embed_dim
            else:
                raise NotImplementedError
        print(f'context fusion mode: {context_fusion}')
        print(f'context position embedding: {context_pe_method}')

        if self.context_fusion == 'joint':
            Block = JointDiTBlock
            self.use_skip = skip[0]
        else:
            Block = DiTBlock
            self.use_skip = skip

        # norm layers
        if norm_layer == 'layernorm':
            norm_layer = nn.LayerNorm
        elif norm_layer == 'rmsnorm':
            norm_layer = RMSNorm
        else:
            raise NotImplementedError

        print(f'use long skip connection: {skip}')
        self.in_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, context_dim=context_dim, num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm,
                act_layer=act_layer, norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha,
                skip=False, skip_norm=False,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])

        self.mid_block = Block(
            dim=embed_dim, context_dim=context_dim, num_heads=num_heads, 
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm,
            act_layer=act_layer, norm_layer=norm_layer,
            time_fusion=time_fusion,
            ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha,
            skip=False, skip_norm=False,
            rope_mode=self.rope,
            context_norm=context_norm,
            use_checkpoint=use_checkpoint)

        self.out_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, context_dim=context_dim, num_heads=num_heads, 
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm,
                act_layer=act_layer, norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha,
                skip=skip, skip_norm=skip_norm,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])

        # FinalLayer block
        self.use_conv = use_conv
        self.final_block = FinalBlock(embed_dim=embed_dim,
                                      patch_size=patch_size,
                                      img_size=img_size,
                                      in_chans=out_chans,
                                      input_type=input_type,
                                      norm_layer=norm_layer,
                                      use_conv=use_conv,
                                      use_adanorm=self.use_adanorm)
        self.initialize_weights()

    def _init_ada(self):
        if self.time_fusion == 'ada':
            nn.init.constant_(self.time_ada_final.weight, 0)
            nn.init.constant_(self.time_ada_final.bias, 0)
            for block in self.in_blocks:
                nn.init.constant_(block.adaln.time_ada.weight, 0)
                nn.init.constant_(block.adaln.time_ada.bias, 0)
            nn.init.constant_(self.mid_block.adaln.time_ada.weight, 0)
            nn.init.constant_(self.mid_block.adaln.time_ada.bias, 0)
            for block in self.out_blocks:
                nn.init.constant_(block.adaln.time_ada.weight, 0)
                nn.init.constant_(block.adaln.time_ada.bias, 0)
        elif self.time_fusion == 'ada_single':
            nn.init.constant_(self.time_ada.weight, 0)
            nn.init.constant_(self.time_ada.bias, 0)
            nn.init.constant_(self.time_ada_final.weight, 0)
            nn.init.constant_(self.time_ada_final.bias, 0)
        elif self.time_fusion in ['ada_lora', 'ada_lora_bias']:
            nn.init.constant_(self.time_ada.weight, 0)
            nn.init.constant_(self.time_ada.bias, 0)
            nn.init.constant_(self.time_ada_final.weight, 0)
            nn.init.constant_(self.time_ada_final.bias, 0)
            for block in self.in_blocks:
                nn.init.kaiming_uniform_(block.adaln.lora_a.weight,
                                         a=math.sqrt(5))
                nn.init.constant_(block.adaln.lora_b.weight, 0)
            nn.init.kaiming_uniform_(self.mid_block.adaln.lora_a.weight,
                                     a=math.sqrt(5))
            nn.init.constant_(self.mid_block.adaln.lora_b.weight, 0)
            for block in self.out_blocks:
                nn.init.kaiming_uniform_(block.adaln.lora_a.weight,
                                         a=math.sqrt(5))
                nn.init.constant_(block.adaln.lora_b.weight, 0)

    def initialize_weights(self):
        # Basic init for all layers
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # init patch Conv like Linear
        w = self.patch_embed.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.patch_embed.proj.bias, 0)

        # Zero-out AdaLN
        if self.use_adanorm:
            self._init_ada()

        # Zero-out Cross Attention
        if self.context_cross:
            for block in self.in_blocks:
                nn.init.constant_(block.cross_attn.proj.weight, 0)
                nn.init.constant_(block.cross_attn.proj.bias, 0)
            nn.init.constant_(self.mid_block.cross_attn.proj.weight, 0)
            nn.init.constant_(self.mid_block.cross_attn.proj.bias, 0)
            for block in self.out_blocks:
                nn.init.constant_(block.cross_attn.proj.weight, 0)
                nn.init.constant_(block.cross_attn.proj.bias, 0)

        # Zero-out cls embedding
        if self.cls_embed:
            if self.use_adanorm:
                nn.init.constant_(self.cls_embed[-1].weight, 0)
                nn.init.constant_(self.cls_embed[-1].bias, 0)

        # Zero-out Output
        # might not zero-out this when using v-prediction
        # it could be good when using noise-prediction
        # nn.init.constant_(self.final_block.linear.weight, 0)
        # nn.init.constant_(self.final_block.linear.bias, 0)
        # if self.use_conv:
        #     nn.init.constant_(self.final_block.final_layer.weight.data, 0)
        #     nn.init.constant_(self.final_block.final_layer.bias, 0)

        # init out Conv
        if self.use_conv:
            nn.init.xavier_uniform_(self.final_block.final_layer.weight)
            nn.init.constant_(self.final_block.final_layer.bias, 0)

    def _concat_x_context(self, x, context, x_mask=None, context_mask=None):
        assert context.shape[-2] == self.context_max_length
        # Check if either x_mask or context_mask is provided
        B = x.shape[0]
        # Create default masks if they are not provided
        if x_mask is None:
            x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
        if context_mask is None:
            context_mask = torch.ones(B, context.shape[-2],
                                      device=context.device).bool()
        # Concatenate the masks along the second dimension (dim=1)
        x_mask = torch.cat([context_mask, x_mask], dim=1)
        # Concatenate context and x along the second dimension (dim=1)
        x = torch.cat((context, x), dim=1)
        return x, x_mask

    def forward(self, x, timesteps, context, 

                x_mask=None, context_mask=None,

                cls_token=None

               ):
        # make it compatible with int time step during inference
        if timesteps.dim() == 0:
            timesteps = timesteps.expand(x.shape[0]).to(x.device, dtype=torch.long)

        x = self.patch_embed(x)
        x = self.x_pe(x)

        B, L, D = x.shape

        if self.use_context:
            context_token = self.context_embed(context)
            context_token = self.context_pe(context_token)
            if self.context_fusion == 'concat' or self.context_fusion == 'joint':
                x, x_mask = self._concat_x_context(x=x, context=context_token,
                                                   x_mask=x_mask,
                                                   context_mask=context_mask)
                context_token, context_mask = None, None
        else:
            context_token, context_mask = None, None

        time_token = self.time_embed(timesteps)
        if self.cls_embed:
            cls_token = self.cls_embed(cls_token)
        time_ada = None
        time_ada_final = None
        if self.use_adanorm:
            if self.cls_embed:
                time_token = time_token + cls_token
            time_token = self.time_act(time_token)
            time_ada_final = self.time_ada_final(time_token)
            if self.time_ada is not None:
                time_ada = self.time_ada(time_token)
        else:
            time_token = time_token.unsqueeze(dim=1)
            if self.cls_embed:
                cls_token = cls_token.unsqueeze(dim=1)
                time_token = torch.cat([time_token, cls_token], dim=1)
            time_token = self.time_pe(time_token)
            x = torch.cat((time_token, x), dim=1)
            if x_mask is not None:
                x_mask = torch.cat(
                    [torch.ones(B, time_token.shape[1], device=x_mask.device).bool(),
                     x_mask], dim=1)
            time_token = None

        skips = []
        for blk in self.in_blocks:
            x = blk(x=x, time_token=time_token, time_ada=time_ada,
                    skip=None, context=context_token,
                    x_mask=x_mask, context_mask=context_mask,
                    extras=self.extras)
            if self.use_skip:
                skips.append(x)

        x = self.mid_block(x=x, time_token=time_token, time_ada=time_ada,
                           skip=None, context=context_token,
                           x_mask=x_mask, context_mask=context_mask,
                           extras=self.extras)

        for blk in self.out_blocks:
            skip = skips.pop() if self.use_skip else None
            x = blk(x=x, time_token=time_token, time_ada=time_ada,
                    skip=skip, context=context_token,
                    x_mask=x_mask, context_mask=context_mask,
                    extras=self.extras)

        x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)

        return x