Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,056 Bytes
9d3cb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import math
from typing import List
from typing import Union
import numpy as np
import torch
from audiotools import AudioSignal
from audiotools.ml import BaseModel
from torch import nn
from .base import CodecMixin
from ..nn.layers import Snake1d
from ..nn.layers import WNConv1d
from ..nn.layers import WNConvTranspose1d
from ..nn.quantize import ResidualVectorQuantize
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
y = self.block(x)
pad = (x.shape[-1] - y.shape[-1]) // 2
if pad > 0:
x = x[..., pad:-pad]
return x + y
class EncoderBlock(nn.Module):
def __init__(self, dim: int = 16, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
ResidualUnit(dim // 2, dilation=1),
ResidualUnit(dim // 2, dilation=3),
ResidualUnit(dim // 2, dilation=9),
Snake1d(dim // 2),
WNConv1d(
dim // 2,
dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
),
)
def forward(self, x):
return self.block(x)
class Encoder(nn.Module):
def __init__(
self,
d_model: int = 64,
strides: list = [2, 4, 8, 8],
d_latent: int = 64,
):
super().__init__()
# Create first convolution
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride in strides:
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride)]
# Create last convolution
self.block += [
Snake1d(d_model),
WNConv1d(d_model, d_latent, kernel_size=3, padding=1),
]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
def forward(self, x):
return self.block(x)
class DecoderBlock(nn.Module):
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
Snake1d(input_dim),
WNConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
),
ResidualUnit(output_dim, dilation=1),
ResidualUnit(output_dim, dilation=3),
ResidualUnit(output_dim, dilation=9),
)
def forward(self, x):
return self.block(x)
class Decoder(nn.Module):
def __init__(
self,
input_channel,
channels,
rates,
d_out: int = 1,
):
super().__init__()
# Add first conv layer
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, stride in enumerate(rates):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride)]
# Add final conv layer
layers += [
Snake1d(output_dim),
WNConv1d(output_dim, d_out, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class DAC(BaseModel, CodecMixin):
def __init__(
self,
encoder_dim: int = 64,
encoder_rates: List[int] = [2, 4, 8, 8],
latent_dim: int = None,
decoder_dim: int = 1536,
decoder_rates: List[int] = [8, 8, 4, 2],
n_codebooks: int = 9,
codebook_size: int = 1024,
codebook_dim: Union[int, list] = 8,
quantizer_dropout: bool = False,
sample_rate: int = 44100,
):
super().__init__()
self.encoder_dim = encoder_dim
self.encoder_rates = encoder_rates
self.decoder_dim = decoder_dim
self.decoder_rates = decoder_rates
self.sample_rate = sample_rate
if latent_dim is None:
latent_dim = encoder_dim * (2 ** len(encoder_rates))
self.latent_dim = latent_dim
self.hop_length = np.prod(encoder_rates)
self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim)
self.n_codebooks = n_codebooks
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.quantizer = ResidualVectorQuantize(
input_dim=latent_dim,
n_codebooks=n_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.decoder = Decoder(
latent_dim,
decoder_dim,
decoder_rates,
)
self.sample_rate = sample_rate
self.apply(init_weights)
self.delay = self.get_delay()
def preprocess(self, audio_data, sample_rate):
if sample_rate is None:
sample_rate = self.sample_rate
assert sample_rate == self.sample_rate
length = audio_data.shape[-1]
right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
audio_data = nn.functional.pad(audio_data, (0, right_pad))
return audio_data
def encode(
self,
audio_data: torch.Tensor,
n_quantizers: int = None,
):
"""Encode given audio data and return quantized latent codes
Parameters
----------
audio_data : Tensor[B x 1 x T]
Audio data to encode
n_quantizers : int, optional
Number of quantizers to use, by default None
If None, all quantizers are used.
Returns
-------
dict
A dictionary with the following keys:
"z" : Tensor[B x D x T]
Quantized continuous representation of input
"codes" : Tensor[B x N x T]
Codebook indices for each codebook
(quantized discrete representation of input)
"latents" : Tensor[B x N*D x T]
Projected latents (continuous representation of input before quantization)
"vq/commitment_loss" : Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
"vq/codebook_loss" : Tensor[1]
Codebook loss to update the codebook
"length" : int
Number of samples in input audio
"""
z = self.encoder(audio_data)
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
z, n_quantizers
)
return z, codes, latents, commitment_loss, codebook_loss
def decode(self, z: torch.Tensor):
"""Decode given latent codes and return audio data
Parameters
----------
z : Tensor[B x D x T]
Quantized continuous representation of input
length : int, optional
Number of samples in output audio, by default None
Returns
-------
dict
A dictionary with the following keys:
"audio" : Tensor[B x 1 x length]
Decoded audio data.
"""
return self.decoder(z)
def forward(
self,
audio_data: torch.Tensor,
sample_rate: int = None,
n_quantizers: int = None,
):
"""Model forward pass
Parameters
----------
audio_data : Tensor[B x 1 x T]
Audio data to encode
sample_rate : int, optional
Sample rate of audio data in Hz, by default None
If None, defaults to `self.sample_rate`
n_quantizers : int, optional
Number of quantizers to use, by default None.
If None, all quantizers are used.
Returns
-------
dict
A dictionary with the following keys:
"z" : Tensor[B x D x T]
Quantized continuous representation of input
"codes" : Tensor[B x N x T]
Codebook indices for each codebook
(quantized discrete representation of input)
"latents" : Tensor[B x N*D x T]
Projected latents (continuous representation of input before quantization)
"vq/commitment_loss" : Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
"vq/codebook_loss" : Tensor[1]
Codebook loss to update the codebook
"length" : int
Number of samples in input audio
"audio" : Tensor[B x 1 x length]
Decoded audio data.
"""
length = audio_data.shape[-1]
audio_data = self.preprocess(audio_data, sample_rate)
z, codes, latents, commitment_loss, codebook_loss = self.encode(
audio_data, n_quantizers
)
x = self.decode(z)
return {
"audio": x[..., :length],
"z": z,
"codes": codes,
"latents": latents,
"vq/commitment_loss": commitment_loss,
"vq/codebook_loss": codebook_loss,
}
if __name__ == "__main__":
import numpy as np
from functools import partial
model = DAC().to("cpu")
for n, m in model.named_modules():
o = m.extra_repr()
p = sum([np.prod(p.size()) for p in m.parameters()])
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
setattr(m, "extra_repr", partial(fn, o=o, p=p))
print(model)
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
length = 88200 * 2
x = torch.randn(1, 1, length).to(model.device)
x.requires_grad_(True)
x.retain_grad()
# Make a forward pass
out = model(x)["audio"]
print("Input shape:", x.shape)
print("Output shape:", out.shape)
# Create gradient variable
grad = torch.zeros_like(out)
grad[:, :, grad.shape[-1] // 2] = 1
# Make a backward pass
out.backward(grad)
# Check non-zero values
gradmap = x.grad.squeeze(0)
gradmap = (gradmap != 0).sum(0) # sum across features
rf = (gradmap != 0).sum()
print(f"Receptive field: {rf.item()}")
x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
model.decompress(model.compress(x, verbose=True), verbose=True)
|