File size: 6,805 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import contextlib
from typing import Optional
import torch
from torch import Tensor
from mGPT.utils.joints import smplh_to_mmm_scaling_factor, smplh2mmm_indexes, get_root_idx
from mGPT.utils.easyconvert import rep_to_rep
from .base import Rots2Joints


def slice_or_none(data, cslice):
    if data is None:
        return data
    else:
        return data[cslice]


class SMPLX(Rots2Joints):
    def __init__(self,
                 path: str,
                 jointstype: str = "mmm",
                 input_pose_rep: str = "matrix",
                 batch_size: int = 512,
                 gender="neutral",
                 **kwargs) -> None:
        super().__init__(path=None, normalization=False)
        self.batch_size = batch_size
        self.input_pose_rep = input_pose_rep
        self.jointstype = jointstype
        self.training = False

        from smplx.body_models import SMPLXLayer
        import os
        # rel_p = path.split('/')
        # rel_p = rel_p[rel_p.index('data'):]
        # rel_p = '/'.join(rel_p)

        # Remove annoying print
        with contextlib.redirect_stdout(None):
            self.smplx = SMPLXLayer(path,
                                    ext="npz",
                                    gender=gender,
                                    batch_size=batch_size).eval()

        self.faces = self.smplx.faces
        for p in self.parameters():
            p.requires_grad = False

    def train(self, *args, **kwargs):
        return self

    def forward(self,
                smpl_data: dict,
                jointstype: Optional[str] = None,
                input_pose_rep: Optional[str] = None,
                batch_size: Optional[int] = None) -> Tensor:

        # Take values from init if not specified there
        jointstype = self.jointstype if jointstype is None else jointstype
        batch_size = self.batch_size if batch_size is None else batch_size
        input_pose_rep = self.input_pose_rep if input_pose_rep is None else input_pose_rep

        poses = smpl_data.rots
        trans = smpl_data.trans

        from functools import reduce
        import operator
        save_shape_bs_len = poses.shape[:-3]
        nposes = reduce(operator.mul, save_shape_bs_len, 1)

        
        matrix_poses = rep_to_rep(self.input_pose_rep, input_pose_rep, poses)

        # Reshaping
        matrix_poses = matrix_poses.reshape((nposes, *matrix_poses.shape[-3:]))

        global_orient = matrix_poses[:, 0]

        if trans is None:
            trans = torch.zeros((*save_shape_bs_len, 3),
                                dtype=poses.dtype,
                                device=poses.device)

        trans_all = trans.reshape((nposes, *trans.shape[-1:]))

        body_pose = matrix_poses[:, 1:22]

        if poses.shape[-3] == 55:
            nohands = False
            nofaces = False
        elif poses.shape[-3] == 52:
            nohands = False
            nofaces = True
        elif poses.shape[-3] == 22:
            nohands = True
            nofaces = True
        else:
            raise NotImplementedError("Could not parse the poses.")

        if nohands:
            left_hand_pose = None
            right_hand_pose = None
        else:
            left_hand_pose = matrix_poses[:, 25:40]
            right_hand_pose = matrix_poses[:, 40:55]

        if nofaces:
            jaw_pose = None
            leye_pose = None
            reye_pose = None
        else:
            jaw_pose = matrix_poses[:, 22:23]
            leye_pose = matrix_poses[:, 23:24]
            reye_pose = matrix_poses[:, 24:25]

        n = len(body_pose)
        outputs = []
        for chunk in range(int((n - 1) / batch_size) + 1):
            chunk_slice = slice(chunk * batch_size, (chunk + 1) * batch_size)
            smpl_output = self.smplx(
                global_orient=slice_or_none(global_orient, chunk_slice),
                body_pose=slice_or_none(body_pose, chunk_slice),
                left_hand_pose=slice_or_none(left_hand_pose, chunk_slice),
                right_hand_pose=slice_or_none(right_hand_pose, chunk_slice),
                jaw_pose=slice_or_none(jaw_pose, chunk_slice),
                leye_pose=slice_or_none(leye_pose, chunk_slice),
                reye_pose=slice_or_none(reye_pose, chunk_slice),
                transl=slice_or_none(trans_all, chunk_slice))

            if jointstype == "vertices":
                output_chunk = smpl_output.vertices
            else:
                joints = smpl_output.joints
                output_chunk = joints

            outputs.append(output_chunk)

        outputs = torch.cat(outputs)
        outputs = outputs.reshape((*save_shape_bs_len, *outputs.shape[1:]))

        # Change topology if needed
        outputs = smplx_to(jointstype, outputs, trans)

        return outputs

    def inverse(self, joints: Tensor) -> Tensor:
        raise NotImplementedError("Cannot inverse SMPLX layer.")


def smplx_to(jointstype, data, trans):

    if "mmm" in jointstype:
        indexes = smplh2mmm_indexes
        data = data[..., indexes, :]

        # make it compatible with mmm
        if jointstype == "mmm":
            data *= smplh_to_mmm_scaling_factor

        if jointstype == "smplmmm":
            pass
        elif jointstype in ["mmm", "mmmns"]:
            # swap axis
            data = data[..., [1, 2, 0]]
            # revert left and right
            data[..., 2] = -data[..., 2]

    elif jointstype == "smplnh":
        from mGPT.utils.joints import smplh2smplnh_indexes
        indexes = smplh2smplnh_indexes
        data = data[..., indexes, :]
    elif jointstype == "smplh":
        pass
    elif jointstype == "vertices":
        pass
    else:
        raise NotImplementedError(f"SMPLX to {jointstype} is not implemented.")

    if jointstype != "vertices":
        # shift the output in each batch
        # such that it is centered on the pelvis/root on the first frame
        root_joint_idx = get_root_idx(jointstype)
        shift = trans[..., 0, :] - data[..., 0, root_joint_idx, :]
        data += shift[..., None, None, :]

    return data