File size: 2,068 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from typing import Optional

import torch
from torch import Tensor, nn
from pathlib import Path
import os


class Joints2Jfeats(nn.Module):

    def __init__(self,
                 path: Optional[str] = None,
                 normalization: bool = False,
                 eps: float = 1e-12,
                 **kwargs) -> None:
        if normalization and path is None:
            raise TypeError(
                "You should provide a path if normalization is on.")

        super().__init__()
        self.normalization = normalization
        self.eps = eps
        # workaround for cluster local/sync
        if path is not None:
            # rel_p = path.split('/')
            # rel_p = rel_p[rel_p.index('deps'):]
            # rel_p = '/'.join(rel_p)
            pass
        if normalization:
            mean_path = Path(path) / "jfeats_mean.pt"
            std_path = Path(path) / "jfeats_std.pt"
            self.register_buffer('mean', torch.load(mean_path))
            self.register_buffer('std', torch.load(std_path))

    def normalize(self, features: Tensor) -> Tensor:
        if self.normalization:
            features = (features - self.mean) / (self.std + self.eps)
        return features

    def unnormalize(self, features: Tensor) -> Tensor:
        if self.normalization:
            features = features * self.std + self.mean
        return features