File size: 26,306 Bytes
0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
# Modified by Jialian Wu from
# https://github.com/microsoft/GenerativeImage2Text/blob/main/generativeimage2text/layers/decoder.py
# and https://github.com/kdexd/virtex
from torch import nn
import torch
import functools
from torch.nn import functional as F
import warnings
class TextualHead(nn.Module):
def __init__(self,
visual_feature_size: int, vocab_size: int, hidden_size: int):
super().__init__()
self.visual_feature_size = visual_feature_size
self.vocab_size = vocab_size
self.hidden_size = hidden_size
@property
def textual_feature_size(self):
return self.hidden_size
class WordAndPositionalEmbedding(nn.Module):
def __init__(
self,
vocab_size: int,
hidden_size: int,
dropout: float = 0.0,
max_caption_length: int = 30,
padding_idx: int = 0,
):
super().__init__()
self.vocab_size = vocab_size
self.padding_idx = padding_idx
#self.words = nn.Embedding(vocab_size, hidden_size, padding_idx=padding_idx)
self.words = nn.Embedding(vocab_size, hidden_size)
# We provide no "padding index" for positional embeddings. We zero out
# the positional embeddings of padded positions as a post-processing.
self.positions = nn.Embedding(max_caption_length, hidden_size)
self.layer_norm = nn.LayerNorm(
hidden_size, eps=1e-8, elementwise_affine=True
)
self.dropout = nn.Dropout(p=dropout)
def forward(self, tokens: torch.Tensor):
position_indices = self._create_position_indices(tokens)
# shape: (batch_size, max_caption_length, hidden_size)
word_embeddings = self.words(tokens)
position_embeddings = self.positions(position_indices)
# shape: (batch_size, max_caption_length, hidden_size)
embeddings = self.layer_norm(word_embeddings + position_embeddings)
embeddings = self.dropout(embeddings)
return embeddings
@functools.lru_cache(maxsize=128)
def _create_position_indices(self, tokens: torch.Tensor):
# Create position indices of the same size as token indices.
batch_size, max_caption_length = tokens.size()
positions = torch.arange(
max_caption_length, dtype=tokens.dtype, device=tokens.device
)
# shape: (batch_size, max_caption_length)
positions = positions.unsqueeze(0).expand(batch_size, max_caption_length)
return positions
class BertEncoderAsDecoder(nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, tgt, memory,
tgt_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
tgt_bi_valid_mask=None,
encoder_history_states=None,
):
assert tgt_key_padding_mask is None, 'not supported'
assert tgt_mask.dim() == 2
assert tgt_mask.shape[0] == tgt_mask.shape[1]
# tgt_mask should always be 0/negative infinity
tgt = tgt.transpose(0, 1)
memory = memory.transpose(0, 1)
hidden_states = torch.cat((memory, tgt), dim=1)
num_tgt = tgt.shape[1]
num_memory = memory.shape[1]
device = tgt.device
dtype = tgt.dtype
top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
top_right = torch.full((num_memory, num_tgt), float('-inf'), device=tgt.device, dtype=dtype,)
bottom_left = torch.zeros((num_tgt, num_memory), dtype=dtype, device=tgt_mask.device,)
left = torch.cat((top_left, bottom_left), dim=0)
right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)
full_attention_mask = torch.cat((left, right), dim=1)[None, :]
if memory_key_padding_mask is None:
memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
# if it is False, it means valid. That is, it is not a padding
assert memory_key_padding_mask.dtype == torch.bool
zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
zero_negative_infinity[memory_key_padding_mask] = float('-inf')
full_attention_mask = full_attention_mask.expand((memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + num_tgt))
full_attention_mask = full_attention_mask.clone()
origin_left = full_attention_mask[:, :, :num_memory]
update = zero_negative_infinity[:, None, :]
full_attention_mask[:, :, :num_memory] = origin_left + update
if tgt_bi_valid_mask is not None:
# verify the correctness
bs = full_attention_mask.shape[0]
# during inference, tgt_bi_valid_mask's length is not changed, but
# num_tgt can be increased
max_valid_target = tgt_bi_valid_mask.shape[1]
mask = tgt_bi_valid_mask[:, None, :].expand((bs, num_memory+num_tgt, max_valid_target))
full_attention_mask[:, :, num_memory:(num_memory+max_valid_target)][mask] = 0
# add axis for multi-head
full_attention_mask = full_attention_mask[:, None, :, :]
if encoder_history_states is None:
result = self.encoder(
hidden_states=hidden_states,
attention_mask=full_attention_mask,
encoder_history_states=encoder_history_states,
)
result = list(result)
result[0] = result[0][:, num_memory:].transpose(0, 1)
if self.encoder.output_hidden_states:
return result[0], result[1]
else:
# make it back-compatible
return result[0]
else:
encoder_out = self.encoder(
hidden_states=hidden_states[:, -1:],
attention_mask=full_attention_mask[:, :, -1:],
encoder_history_states=encoder_history_states,
)
result = encoder_out[0].transpose(0, 1)
if self.encoder.output_hidden_states:
return result, encoder_out[1]
else:
return result
def create_transformer(decoder_type, norm_type,
textual_feature_size,
attention_heads,
feedforward_size,
dropout,
num_layers,
output_hidden_states=False,
use_mlp_wrapper=None,
use_act_checkpoint=True,
):
assert norm_type in ['post', 'pre']
if decoder_type is None:
LayerClass = (
nn.TransformerDecoderLayer
if norm_type == "post"
else PreNormTransformerDecoderLayer
)
_layer = LayerClass(
textual_feature_size,
attention_heads,
dim_feedforward=feedforward_size,
dropout=dropout,
activation="gelu",
)
return nn.TransformerDecoder(_layer, num_layers)
elif decoder_type == 'bert_en':
from .modeling_bert import BertConfig, BertEncoder
config = BertConfig(
vocab_size_or_config_json_file=30522,
hidden_size=textual_feature_size,
num_hidden_layers=num_layers,
num_attention_heads=attention_heads,
intermediate_size=feedforward_size,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
layer_norm_eps=1e-12,
)
config.pre_norm = (norm_type == 'pre')
config.use_mlp_wrapper = use_mlp_wrapper
config.output_hidden_states = output_hidden_states
encoder = BertEncoder(config, use_act_checkpoint=use_act_checkpoint)
return BertEncoderAsDecoder(encoder)
class PreNormTransformerDecoderLayer(nn.TransformerDecoderLayer):
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
tgt_key_padding_mask=None, memory_key_padding_mask=None):
# fmt: off
# We use the members (modules) from super-class, just the order of
# operations is changed here. First layernorm, then attention.
tgt2 = self.norm1(tgt)
tgt2, _ = self.self_attn(
tgt2, tgt2, tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask
)
tgt = tgt + self.dropout1(tgt2)
# Layernorm first, then decoder attention.
tgt2 = self.norm2(tgt)
tgt2, _ = self.multihead_attn(
tgt2, memory, memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask
)
tgt = tgt + self.dropout2(tgt2)
# Layernorm first, then transformation through feedforward network.
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
class TransformerDecoderTextualHead(TextualHead):
def __init__(
self,
object_feature_size: int,
vocab_size: int,
hidden_size: int,
num_layers: int,
attention_heads: int,
feedforward_size: int,
dropout: float = 0.1,
norm_type: str = "post",
mask_future_positions: bool = True,
max_caption_length: int = 1024,
padding_idx: int = 0,
decoder_type=None,
not_tie_weight=None,
output_hidden_states=None,
use_mlp_wrapper=None,
use_act_checkpoint=True,
):
super().__init__(object_feature_size, vocab_size, hidden_size)
self.num_layers = num_layers
self.attention_heads = attention_heads
self.feedforward_size = feedforward_size
self.dropout = dropout
assert mask_future_positions
self.padding_idx = padding_idx
self.object_feature_projection = nn.Sequential(
nn.Linear(object_feature_size, self.textual_feature_size),
nn.LayerNorm(self.textual_feature_size))
self.embedding = WordAndPositionalEmbedding(
self.vocab_size,
self.textual_feature_size,
dropout=dropout,
max_caption_length=max_caption_length,
padding_idx=padding_idx,
)
self.transformer = create_transformer(
decoder_type=decoder_type,
norm_type=norm_type,
textual_feature_size=self.textual_feature_size,
attention_heads=self.attention_heads,
feedforward_size=self.feedforward_size,
dropout=dropout,
num_layers=self.num_layers,
output_hidden_states=output_hidden_states,
use_mlp_wrapper=use_mlp_wrapper,
use_act_checkpoint=use_act_checkpoint,
)
self.apply(self._init_weights)
# Create an output linear layer and tie the input and output word
# embeddings to reduce parametejs.
self.output = nn.Linear(self.textual_feature_size, vocab_size)
if not not_tie_weight:
self.output.weight = self.embedding.words.weight
@staticmethod
def _init_weights(module):
"""Initialize weights like BERT - N(0.0, 0.02), bias = 0."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.MultiheadAttention):
module.in_proj_weight.data.normal_(mean=0.0, std=0.02)
module.out_proj.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def forward(
self,
hidden_states,
text_tokens,
):
projected_object_features = self.object_feature_projection(hidden_states) if hidden_states is not None else None
batch_size, max_text_length = text_tokens.size()
text_embeddings = self.embedding(text_tokens)
# An additive mask for masking the future (one direction).
uni_mask_zero_neg = self._generate_future_mask(
max_text_length, text_embeddings.dtype, text_embeddings.device
)
# We transpose the first two dimensions of tokens embeddings and visual
# features, as required by decoder.
text_embeddings = text_embeddings.transpose(0, 1)
projected_object_features = projected_object_features.transpose(0, 1)
# if transformer here is the pytorch/decoder, there is no chance, the
# output is always tensor
trans_out = self.transformer(
text_embeddings,
projected_object_features,
tgt_mask=uni_mask_zero_neg,
)
if isinstance(trans_out, tuple):
textual_features = trans_out[0]
else:
assert isinstance(trans_out, torch.Tensor)
textual_features = trans_out
# Undo the transpose and bring batch to dim 0.
# shape: (batch_size, max_caption_length, hidden_size)
textual_features = textual_features.transpose(0, 1)
# shape: (batch_size, max_caption_length, vocab_size)
output_logits = self.output(textual_features)
if isinstance(trans_out, tuple):
return output_logits, trans_out[1]
else:
return output_logits
def _generate_future_mask(
self, size: int, dtype: torch.dtype, device: torch.device
):
# Default mask is for forward direction. Flip for backward direction.
mask = torch.triu(
torch.ones(size, size, device=device, dtype=dtype), diagonal=1
)
mask = mask.masked_fill(mask == 1, float("-inf"))
return mask
class AutoRegressiveBeamSearch(object):
def __init__(
self,
end_token_id: int,
max_steps: int = 50,
beam_size: int = 5,
objectdet=True,
per_node_beam_size: int = 2,
):
self._eos_index = end_token_id
self.max_steps = max_steps
self.beam_size = beam_size
self.objectdet = objectdet
self.per_node_beam_size = per_node_beam_size or beam_size
def search(self, begin_tokens, step):
if self.beam_size > 1 and self.objectdet:
only_return_best = False
else:
only_return_best = True
batch_size = begin_tokens.size()[0]
predictions = begin_tokens.unsqueeze(1).expand((batch_size, self.beam_size, begin_tokens.shape[-1]))
# Calculate the first timestep. This is done outside the main loop
# because we are going from a single decoder input (the output from the
# encoder) to the top `beam_size` decoder outputs. On the other hand,
# within the main loop we are going from the `beam_size` elements of the
# beam to `beam_size`^2 candidates from which we will select the top
# `beam_size` elements for the next iteration.
# shape: (batch_size, num_classes)
start_class_logits = step(begin_tokens)
# Convert logits to logprobs.
# shape: (batch_size * beam_size, vocab_size)
start_class_logprobs = F.log_softmax(start_class_logits, dim=1)
num_classes = start_class_logprobs.size()[1]
# shape: (batch_size, beam_size), (batch_size, beam_size)
start_top_logprobs, start_predicted_classes = start_class_logprobs.topk(
self.beam_size
)
if (
self.beam_size == 1
and (start_predicted_classes == self._eos_index).all()
):
warnings.warn(
"Empty object description predicted. You may want to increase beam"
"size or ensure your step function is working properly.",
RuntimeWarning,
)
if only_return_best:
return start_predicted_classes, start_top_logprobs
else:
return start_predicted_classes.unsqueeze(-1), start_top_logprobs
# The log probs for the last time step.
# shape: (batch_size, beam_size)
last_logprobs = start_top_logprobs
# shape: (batch_size, beam_size, sequence_length)
predictions = torch.cat([predictions, start_predicted_classes.unsqueeze(-1)], dim=-1)
# Log probability tensor that mandates that the end token is selected.
# shape: (batch_size * beam_size, num_classes)
logprobs_after_end = start_class_logprobs.new_full(
(batch_size * self.beam_size, num_classes), float("-inf")
)
logprobs_after_end[:, self._eos_index] = 0.0
logits_after_end = start_class_logprobs.new_full(
(batch_size * self.beam_size, num_classes), float("-inf")
)
logits_after_end[:, self._eos_index] = 0
while predictions.shape[-1] < self.max_steps:
# shape: (batch_size * beam_size,)
last_predictions = predictions[:, :, -1].reshape(batch_size * self.beam_size)
# If every predicted token from the last step is `self._eos_index`,
# then we can stop early.
if (last_predictions == self._eos_index).all():
break
predictions_so_far = predictions.view(
batch_size * self.beam_size, -1
)
# shape: (batch_size * beam_size, num_classes)
class_logits = step(predictions_so_far)
# Set logprobs of last predicted tokens as high negative value to avoid
# repetition in description.
class_logits = class_logits.scatter(1, predictions_so_far[:, -1].view((-1, 1)), -10000)
# shape: (batch_size * beam_size, num_classes)
last_predictions_expanded = last_predictions.unsqueeze(-1).expand(
batch_size * self.beam_size, num_classes
)
# Here we are finding any beams where we predicted the end token in
# the previous timestep and replacing the distribution with a
# one-hot distribution, forcing the beam to predict the end token
# this timestep as well.
class_logits = torch.where(
last_predictions_expanded == self._eos_index,
logits_after_end,
class_logits,
)
# Convert logits to logprobs.
# shape: (batch_size * beam_size, vocab_size)
class_logprobs = F.log_softmax(class_logits, dim=1)
# shape (both): (batch_size * beam_size, per_node_beam_size)
top_logprobs, predicted_classes = class_logprobs.topk(
self.per_node_beam_size
)
# Here we expand the last log probs to `(batch_size * beam_size,
# per_node_beam_size)` so that we can add them to the current log
# probs for this timestep. This lets us maintain the log
# probability of each element on the beam.
# shape: (batch_size * beam_size, per_node_beam_size)
expanded_last_logprobs = (
last_logprobs.unsqueeze(2)
.expand(batch_size, self.beam_size, self.per_node_beam_size)
.reshape(batch_size * self.beam_size, self.per_node_beam_size)
)
# shape: (batch_size * beam_size, per_node_beam_size)
summed_top_logprobs = top_logprobs + expanded_last_logprobs
# shape: (batch_size, beam_size * per_node_beam_size)
reshaped_summed = summed_top_logprobs.reshape(
batch_size, self.beam_size * self.per_node_beam_size
)
# shape: (batch_size, beam_size * per_node_beam_size)
reshaped_predicted_classes = predicted_classes.reshape(
batch_size, self.beam_size * self.per_node_beam_size
)
# Append the predictions to the current beam.
reshaped_beam = (
predictions.view(batch_size * self.beam_size, 1, -1)
.repeat(1, self.per_node_beam_size, 1)
.reshape(batch_size, self.beam_size * self.per_node_beam_size, -1)
)
# batch_size, (beam_size * per_node_beach_size), #token
reshaped_beam = torch.cat([reshaped_beam, reshaped_predicted_classes.unsqueeze(-1)], dim=-1)
# Keep only the top `beam_size` beam indices.
# shape: (batch_size, beam_size), (batch_size, beam_size)
restricted_beam_logprobs, restricted_beam_indices = reshaped_summed.topk(
self.beam_size
)
predictions = reshaped_beam.gather(
1, restricted_beam_indices.unsqueeze(-1).repeat(1,1,reshaped_beam.shape[-1])
)
# shape: (batch_size, beam_size)
last_logprobs = restricted_beam_logprobs
if not torch.isfinite(last_logprobs).all():
warnings.warn(
"Infinite log probs encountered. Some final descriptions may not "
"make sense. This can happen when the beam size is larger than"
" the number of valid (non-zero probability) transitions that "
"the step function produces.",
RuntimeWarning,
)
# Optionally select best beam and its logprobs.
if only_return_best:
# shape: (batch_size, sequence_length)
predictions = predictions[:, 0, :]
last_logprobs = last_logprobs[:, 0]
num_valid = (predictions != self._eos_index).sum(dim=-1)
num_valid += (predictions == self._eos_index).sum(dim=-1) > 0
num_valid = num_valid - begin_tokens.shape[1]
num_valid = num_valid.clip(min=1)
last_logprobs = last_logprobs / num_valid
return predictions, last_logprobs
class GRiTTextDecoder(nn.Module):
def __init__(
self,
transformer,
begin_token_id=101,
beamsearch_decode=None,
loss_type=None,
tokenizer=None,
):
super().__init__()
self.textual = transformer
self.padding_idx = self.textual.padding_idx
self.begin_token_id = begin_token_id
self.beamsearch_decode = beamsearch_decode
self.tokenizer = tokenizer
if loss_type is None:
self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_idx)
elif loss_type == 'smooth':
self.loss = SmoothLabelCrossEntropyLoss(ignore_index=self.padding_idx)
else:
raise NotImplementedError(loss_type)
def forward(self, batch):
object_features = batch['object_features']
if self.training:
caption_token_input = batch["text_tokens"]
output_logits = self.textual(
object_features,
caption_token_input,
)
if 'need_predict' in batch:
# in place should also be good, but we do not choose that for
# safety as we may use it in prediction results in future
target = batch["text_tokens"].clone()
target[batch['need_predict'] == 0] = self.padding_idx
else:
target = batch["text_tokens"]
feat = output_logits[:, :-1].contiguous()
target = target[:, 1:].contiguous()
feat = feat.view(-1, self.textual.vocab_size)
target = target.view(-1)
valid_mask = target != self.padding_idx
target = target[valid_mask]
feat = feat[valid_mask]
loss = self.loss(feat, target)
return loss
else:
output_dict = self.infer(object_features)
return output_dict
def infer(self, object_features):
batch_size = object_features.size(0)
begin_tokens = object_features.new_full(
(batch_size, 1), self.begin_token_id
).long()
decoding_step = functools.partial(
self.decoding_step, object_features
)
object_description_tokens, logprobs = self.beamsearch_decode.search(
begin_tokens, decoding_step
)
output_dict = {
'predictions': object_description_tokens,
'logprobs': logprobs,
}
return output_dict
def decoding_step(self, object_features, partial_text):
batch_size = object_features.shape[0]
beam_size = int(partial_text.size(0) / batch_size)
if beam_size > 1:
batch_size, num_token, channels = object_features.size()
object_features = object_features.unsqueeze(1).repeat(1, beam_size, 1, 1)
object_features = object_features.view(
batch_size * beam_size, num_token, channels
)
text_lengths = torch.ones_like(partial_text)
if len(text_lengths.size()) != 2:
partial_text = partial_text.unsqueeze(1)
# shape: (batch_size * beam_size, partial_caption_length, vocab_size)
logits = self.textual(
object_features,
partial_text,
)
return logits[:, -1, :].float()
class SmoothLabelCrossEntropyLoss(nn.Module):
def __init__(self, eps=0.1, log_prefix='', ignore_index=None):
super().__init__()
self.eps = eps
self.log_soft = nn.LogSoftmax(dim=1)
self.kl = nn.KLDivLoss(reduction='none')
self.iter = 0
self.max_loss = 0
self.min_loss = 0
self.log_prefix = log_prefix
self.ignore_index = ignore_index
def forward(self, feature, target):
feature = feature.float()
if self.ignore_index is not None:
valid_mask = target != self.ignore_index
target = target[valid_mask]
feature = feature[valid_mask]
assert target.numel() > 0
self.iter += 1
eps = self.eps
n_class = feature.size(1)
one_hot = torch.zeros_like(feature).scatter(1, target.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = self.log_soft(feature)
loss = self.kl(log_prb, one_hot)
return loss.sum(dim=1).mean()
|