File size: 19,092 Bytes
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#!/usr/bin/env python
import os
from collections import OrderedDict

from timm.models.layers import DropPath
import torch
from torch import nn
from torch.nn import MultiheadAttention
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint


MODEL_PATH = './'
_MODELS = {
    "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"),
    "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"),
    "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"),
}


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class Local_MHRA(nn.Module):
    def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3):
        super().__init__() 

        padding = pos_kernel_size // 2
        re_d_model = int(d_model // dw_reduction)
        self.pos_embed = nn.Sequential(
            nn.BatchNorm3d(d_model),
            nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0),
            nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model),
            nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0),
        )

        # init zero
        print('Init zero for Conv in pos_emb')
        nn.init.constant_(self.pos_embed[3].weight, 0)
        nn.init.constant_(self.pos_embed[3].bias, 0)

    def forward(self, x):
        return self.pos_embed(x)


class ResidualAttentionBlock(nn.Module):
    def __init__(
            self, d_model, n_head, attn_mask=None, drop_path=0.0, 
            dw_reduction=1.5, no_lmhra=False, double_lmhra=True
        ):
        super().__init__() 
        
        self.n_head = n_head
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        print(f'Drop path rate: {drop_path}')

        self.no_lmhra = no_lmhra
        self.double_lmhra = double_lmhra
        print(f'No L_MHRA: {no_lmhra}')
        print(f'Double L_MHRA: {double_lmhra}')
        if not no_lmhra:
            self.lmhra1 = Local_MHRA(d_model, dw_reduction=dw_reduction)
            if double_lmhra:
                self.lmhra2 = Local_MHRA(d_model, dw_reduction=dw_reduction)

        # spatial
        self.attn = MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x, T=8, use_checkpoint=False):
        # x: 1+HW, NT, C
        if not self.no_lmhra:
            # Local MHRA
            tmp_x = x[1:, :, :]
            L, NT, C = tmp_x.shape
            N = NT // T
            H = W = int(L ** 0.5)
            tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous()
            tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x))
            tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C)
            x = torch.cat([x[:1, :, :], tmp_x], dim=0)
        # MHSA
        if use_checkpoint:
            attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x))
            x = x + self.drop_path(attn_out)
        else:
            x = x + self.drop_path(self.attention(self.ln_1(x)))
        # Local MHRA
        if not self.no_lmhra and self.double_lmhra:
            tmp_x = x[1:, :, :]
            tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous()
            tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x))
            tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C)
            x = torch.cat([x[:1, :, :], tmp_x], dim=0)
        # FFN
        if use_checkpoint:
            mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x))
            x = x + self.drop_path(mlp_out)
        else:
            x = x + self.drop_path(self.mlp(self.ln_2(x)))
        return x


class Extractor(nn.Module):
    def __init__(
            self, d_model, n_head, attn_mask=None,
            mlp_factor=4.0, dropout=0.0, drop_path=0.0,
        ):
        super().__init__()

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        print(f'Drop path rate: {drop_path}')
        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = nn.LayerNorm(d_model)
        d_mlp = round(mlp_factor * d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_mlp)),
            ("gelu", QuickGELU()),
            ("dropout", nn.Dropout(dropout)),
            ("c_proj", nn.Linear(d_mlp, d_model))
        ]))
        self.ln_2 = nn.LayerNorm(d_model)
        self.ln_3 = nn.LayerNorm(d_model)
        self.attn_mask = attn_mask

        # zero init
        nn.init.xavier_uniform_(self.attn.in_proj_weight)
        nn.init.constant_(self.attn.out_proj.weight, 0.)
        nn.init.constant_(self.attn.out_proj.bias, 0.)
        nn.init.xavier_uniform_(self.mlp[0].weight)
        nn.init.constant_(self.mlp[-1].weight, 0.)
        nn.init.constant_(self.mlp[-1].bias, 0.)

    def attention(self, x, y):
        d_model = self.ln_1.weight.size(0)
        q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model]

        k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model]
        v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:]
        Tx, Ty, N = q.size(0), k.size(0), q.size(1)
        q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
        k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
        v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
        aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5))

        aff = aff.softmax(dim=-1)
        out = aff @ v
        out = out.permute(2, 0, 1, 3).flatten(2)
        out = self.attn.out_proj(out)
        return out

    def forward(self, x, y):
        x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y)))
        x = x + self.drop_path(self.mlp(self.ln_2(x)))
        return x


class Transformer(nn.Module):
    def __init__(
            self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., 
            use_checkpoint=False, checkpoint_num=[0], t_size=8, dw_reduction=2,
            no_lmhra=False, double_lmhra=True,
            return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
            n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
            mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], 
            cls_dropout=0.5, num_classes=400,
        ):
        super().__init__()
        self.T = t_size
        self.return_list = return_list
        # backbone
        b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)]
        self.resblocks = nn.ModuleList([
            ResidualAttentionBlock(
                width, heads, attn_mask, 
                drop_path=b_dpr[i],
                dw_reduction=dw_reduction,
                no_lmhra=no_lmhra,
                double_lmhra=double_lmhra,
            ) for i in range(layers)
        ])
        # checkpoint
        self.use_checkpoint = use_checkpoint
        self.checkpoint_num = checkpoint_num
        self.n_layers = n_layers
        print(f'Use checkpoint: {self.use_checkpoint}')
        print(f'Checkpoint number: {self.checkpoint_num}')

        # global block
        assert n_layers == len(return_list)
        if n_layers > 0:
            self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim))
            self.dpe = nn.ModuleList([
                nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim)
                for i in range(n_layers)
            ])
            for m in self.dpe:
                nn.init.constant_(m.bias, 0.)
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)]
            self.dec = nn.ModuleList([
                Extractor(
                    n_dim, n_head, mlp_factor=mlp_factor, 
                    dropout=mlp_dropout[i], drop_path=dpr[i],
                ) for i in range(n_layers)
            ])
            self.balance = nn.Parameter(torch.zeros((n_dim)))
            self.sigmoid = nn.Sigmoid()
        # projection
        self.proj = nn.Sequential(
            nn.LayerNorm(n_dim),
            nn.Dropout(cls_dropout),
            nn.Linear(n_dim, num_classes),
        )

    def forward(self, x):
        T_down = self.T
        L, NT, C = x.shape
        N = NT // T_down
        H = W = int((L - 1) ** 0.5)

        if self.n_layers > 0:
            cls_token = self.temporal_cls_token.repeat(1, N, 1)

        j = -1
        for i, resblock in enumerate(self.resblocks):
            if self.use_checkpoint and i < self.checkpoint_num[0]:
                x = resblock(x, self.T, use_checkpoint=True)
            else:
                x = resblock(x, T_down)
            if i in self.return_list:
                j += 1
                tmp_x = x.clone()
                tmp_x = tmp_x.view(L, N, T_down, C)
                # dpe
                _, tmp_feats = tmp_x[:1], tmp_x[1:]
                tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W)
                tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1).contiguous()
                tmp_x[1:] = tmp_x[1:] + tmp_feats
                # global block
                tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1)  # T * L, N, C
                cls_token = self.dec[j](cls_token, tmp_x)

        if self.n_layers > 0:
            weight = self.sigmoid(self.balance)
            residual = x.view(L, N, T_down, C)[0].mean(1)  # L, N, T, C
            return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual)
        else:
            residual = x.view(L, N, T_down, C)[0].mean(1)  # L, N, T, C
            return self.proj(residual)


class VisionTransformer(nn.Module):
    def __init__(
        self, 
        # backbone
        input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0.,
        use_checkpoint=False, checkpoint_num=[0], t_size=8, kernel_size=3, dw_reduction=1.5,
        temporal_downsample=True,
        no_lmhra=-False, double_lmhra=True,
        # global block
        return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
        n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
        mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], 
        cls_dropout=0.5, num_classes=400,
    ):
        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        padding = (kernel_size - 1) // 2
        if temporal_downsample:
            self.conv1 = nn.Conv3d(3, width, (kernel_size, patch_size, patch_size), (2, patch_size, patch_size), (padding, 0, 0), bias=False)
            t_size = t_size // 2
        else:
            self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False)

        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre = LayerNorm(width)
        
        self.transformer = Transformer(
            width, layers, heads, dw_reduction=dw_reduction, 
            backbone_drop_path_rate=backbone_drop_path_rate, 
            use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size,
            no_lmhra=no_lmhra, double_lmhra=double_lmhra,
            return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, 
            mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, 
            cls_dropout=cls_dropout, num_classes=num_classes,
        )

    def forward(self, x):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        N, C, T, H, W = x.shape
        x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C)
        
        x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        out = self.transformer(x)
        return out


def inflate_weight(weight_2d, time_dim, center=True):
    print(f'Init center: {center}')
    if center:
        weight_3d = torch.zeros(*weight_2d.shape)
        weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
        middle_idx = time_dim // 2
        weight_3d[:, :, middle_idx, :, :] = weight_2d
    else:
        weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
        weight_3d = weight_3d / time_dim
    return weight_3d


def load_state_dict(model, state_dict):
    state_dict_3d = model.state_dict()
    for k in state_dict.keys():
        if state_dict[k].shape != state_dict_3d[k].shape:
            if len(state_dict_3d[k].shape) <= 2:
                print(f'Ignore: {k}')
                continue
            print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
            time_dim = state_dict_3d[k].shape[2]
            state_dict[k] = inflate_weight(state_dict[k], time_dim)
    model.load_state_dict(state_dict, strict=False)


def intern_action_b16(
    pretrained=True, use_checkpoint=False, checkpoint_num=[0],
    t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., 
    temporal_downsample=True,
    no_lmhra=False, double_lmhra=True,
    return_list=[8, 9, 10, 11], 
    n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
    mlp_dropout=[0.5, 0.5, 0.5, 0.5], 
    cls_dropout=0.5, num_classes=400,
):
    model = VisionTransformer(
        input_resolution=224,
        patch_size=16,
        width=768,
        layers=12,
        heads=12,
        output_dim=512,
        use_checkpoint=use_checkpoint,
        checkpoint_num=checkpoint_num,
        t_size=t_size,
        dw_reduction=dw_reduction, 
        backbone_drop_path_rate=backbone_drop_path_rate, 
        temporal_downsample=temporal_downsample,
        no_lmhra=no_lmhra,
        double_lmhra=double_lmhra,
        return_list=return_list, 
        n_layers=n_layers, 
        n_dim=n_dim, 
        n_head=n_head, 
        mlp_factor=mlp_factor, 
        drop_path_rate=drop_path_rate, 
        mlp_dropout=mlp_dropout, 
        cls_dropout=cls_dropout, 
        num_classes=num_classes,
    )

    if pretrained:
        print('load pretrained weights')
        state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu')
        load_state_dict(model, state_dict)
    return model.eval()


def intern_action_l14(
    pretrained=True, use_checkpoint=False, checkpoint_num=[0],
    t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., 
    temporal_downsample=True,
    no_lmhra=False, double_lmhra=True,
    return_list=[20, 21, 22, 23],
    n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0.,
    mlp_dropout=[0.5, 0.5, 0.5, 0.5], 
    cls_dropout=0.5, num_classes=400,
):
    model = VisionTransformer(
        input_resolution=224,
        patch_size=14,
        width=1024,
        layers=24,
        heads=16,
        output_dim=768,
        use_checkpoint=use_checkpoint,
        checkpoint_num=checkpoint_num,
        t_size=t_size,
        dw_reduction=dw_reduction, 
        backbone_drop_path_rate=backbone_drop_path_rate, 
        temporal_downsample=temporal_downsample,
        no_lmhra=no_lmhra,
        double_lmhra=double_lmhra,
        return_list=return_list, 
        n_layers=n_layers, 
        n_dim=n_dim, 
        n_head=n_head, 
        mlp_factor=mlp_factor, 
        drop_path_rate=drop_path_rate, 
        mlp_dropout=mlp_dropout, 
        cls_dropout=cls_dropout, 
        num_classes=num_classes,
    )

    if pretrained:
        print('load pretrained weights')
        state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu')
        load_state_dict(model, state_dict)
    return model.eval()


def intern_action_l14_336(
    pretrained=True, use_checkpoint=False, checkpoint_num=[0],
    t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., 
    no_temporal_downsample=True,
    no_lmhra=False, double_lmhra=True,
    return_list=[20, 21, 22, 23],
    n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0.,
    mlp_dropout=[0.5, 0.5, 0.5, 0.5], 
    cls_dropout=0.5, num_classes=400,
):
    model = VisionTransformer(
        input_resolution=336,
        patch_size=14,
        width=1024,
        layers=24,
        heads=16,
        output_dim=768,
        use_checkpoint=use_checkpoint,
        checkpoint_num=checkpoint_num,
        t_size=t_size,
        dw_reduction=dw_reduction, 
        backbone_drop_path_rate=backbone_drop_path_rate, 
        no_temporal_downsample=no_temporal_downsample,
        no_lmhra=no_lmhra,
        double_lmhra=double_lmhra,
        return_list=return_list, 
        n_layers=n_layers, 
        n_dim=n_dim, 
        n_head=n_head, 
        mlp_factor=mlp_factor, 
        drop_path_rate=drop_path_rate, 
        mlp_dropout=mlp_dropout, 
        cls_dropout=cls_dropout, 
        num_classes=num_classes,
    )

    if pretrained:
        print('load pretrained weights')
        state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
        load_state_dict(model, state_dict)
    return model.eval()


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    num_frames = 16

    model = intern_action_l14(
        pretrained=False, 
        t_size=num_frames, backbone_drop_path_rate=0., drop_path_rate=0.,
        dw_reduction=1.5,
        no_lmhra=False,
        temporal_downsample=True,
        return_list=[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
        mlp_dropout=[0.5]*16,
        n_layers=16
    )
    print(model)

    flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224))
    s = time.time()
    print(flop_count_table(flops, max_depth=1))
    print(time.time()-s)