File size: 19,092 Bytes
0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
#!/usr/bin/env python
import os
from collections import OrderedDict
from timm.models.layers import DropPath
import torch
from torch import nn
from torch.nn import MultiheadAttention
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
MODEL_PATH = './'
_MODELS = {
"ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"),
"ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"),
"ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"),
}
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(1.702 * x)
class Local_MHRA(nn.Module):
def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3):
super().__init__()
padding = pos_kernel_size // 2
re_d_model = int(d_model // dw_reduction)
self.pos_embed = nn.Sequential(
nn.BatchNorm3d(d_model),
nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0),
nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model),
nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0),
)
# init zero
print('Init zero for Conv in pos_emb')
nn.init.constant_(self.pos_embed[3].weight, 0)
nn.init.constant_(self.pos_embed[3].bias, 0)
def forward(self, x):
return self.pos_embed(x)
class ResidualAttentionBlock(nn.Module):
def __init__(
self, d_model, n_head, attn_mask=None, drop_path=0.0,
dw_reduction=1.5, no_lmhra=False, double_lmhra=True
):
super().__init__()
self.n_head = n_head
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
print(f'Drop path rate: {drop_path}')
self.no_lmhra = no_lmhra
self.double_lmhra = double_lmhra
print(f'No L_MHRA: {no_lmhra}')
print(f'Double L_MHRA: {double_lmhra}')
if not no_lmhra:
self.lmhra1 = Local_MHRA(d_model, dw_reduction=dw_reduction)
if double_lmhra:
self.lmhra2 = Local_MHRA(d_model, dw_reduction=dw_reduction)
# spatial
self.attn = MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x, T=8, use_checkpoint=False):
# x: 1+HW, NT, C
if not self.no_lmhra:
# Local MHRA
tmp_x = x[1:, :, :]
L, NT, C = tmp_x.shape
N = NT // T
H = W = int(L ** 0.5)
tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous()
tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x))
tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C)
x = torch.cat([x[:1, :, :], tmp_x], dim=0)
# MHSA
if use_checkpoint:
attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x))
x = x + self.drop_path(attn_out)
else:
x = x + self.drop_path(self.attention(self.ln_1(x)))
# Local MHRA
if not self.no_lmhra and self.double_lmhra:
tmp_x = x[1:, :, :]
tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous()
tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x))
tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C)
x = torch.cat([x[:1, :, :], tmp_x], dim=0)
# FFN
if use_checkpoint:
mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x))
x = x + self.drop_path(mlp_out)
else:
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Extractor(nn.Module):
def __init__(
self, d_model, n_head, attn_mask=None,
mlp_factor=4.0, dropout=0.0, drop_path=0.0,
):
super().__init__()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
print(f'Drop path rate: {drop_path}')
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = nn.LayerNorm(d_model)
d_mlp = round(mlp_factor * d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_mlp)),
("gelu", QuickGELU()),
("dropout", nn.Dropout(dropout)),
("c_proj", nn.Linear(d_mlp, d_model))
]))
self.ln_2 = nn.LayerNorm(d_model)
self.ln_3 = nn.LayerNorm(d_model)
self.attn_mask = attn_mask
# zero init
nn.init.xavier_uniform_(self.attn.in_proj_weight)
nn.init.constant_(self.attn.out_proj.weight, 0.)
nn.init.constant_(self.attn.out_proj.bias, 0.)
nn.init.xavier_uniform_(self.mlp[0].weight)
nn.init.constant_(self.mlp[-1].weight, 0.)
nn.init.constant_(self.mlp[-1].bias, 0.)
def attention(self, x, y):
d_model = self.ln_1.weight.size(0)
q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model]
k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model]
v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:]
Tx, Ty, N = q.size(0), k.size(0), q.size(1)
q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5))
aff = aff.softmax(dim=-1)
out = aff @ v
out = out.permute(2, 0, 1, 3).flatten(2)
out = self.attn.out_proj(out)
return out
def forward(self, x, y):
x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y)))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(
self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0.,
use_checkpoint=False, checkpoint_num=[0], t_size=8, dw_reduction=2,
no_lmhra=False, double_lmhra=True,
return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
cls_dropout=0.5, num_classes=400,
):
super().__init__()
self.T = t_size
self.return_list = return_list
# backbone
b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)]
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(
width, heads, attn_mask,
drop_path=b_dpr[i],
dw_reduction=dw_reduction,
no_lmhra=no_lmhra,
double_lmhra=double_lmhra,
) for i in range(layers)
])
# checkpoint
self.use_checkpoint = use_checkpoint
self.checkpoint_num = checkpoint_num
self.n_layers = n_layers
print(f'Use checkpoint: {self.use_checkpoint}')
print(f'Checkpoint number: {self.checkpoint_num}')
# global block
assert n_layers == len(return_list)
if n_layers > 0:
self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim))
self.dpe = nn.ModuleList([
nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim)
for i in range(n_layers)
])
for m in self.dpe:
nn.init.constant_(m.bias, 0.)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)]
self.dec = nn.ModuleList([
Extractor(
n_dim, n_head, mlp_factor=mlp_factor,
dropout=mlp_dropout[i], drop_path=dpr[i],
) for i in range(n_layers)
])
self.balance = nn.Parameter(torch.zeros((n_dim)))
self.sigmoid = nn.Sigmoid()
# projection
self.proj = nn.Sequential(
nn.LayerNorm(n_dim),
nn.Dropout(cls_dropout),
nn.Linear(n_dim, num_classes),
)
def forward(self, x):
T_down = self.T
L, NT, C = x.shape
N = NT // T_down
H = W = int((L - 1) ** 0.5)
if self.n_layers > 0:
cls_token = self.temporal_cls_token.repeat(1, N, 1)
j = -1
for i, resblock in enumerate(self.resblocks):
if self.use_checkpoint and i < self.checkpoint_num[0]:
x = resblock(x, self.T, use_checkpoint=True)
else:
x = resblock(x, T_down)
if i in self.return_list:
j += 1
tmp_x = x.clone()
tmp_x = tmp_x.view(L, N, T_down, C)
# dpe
_, tmp_feats = tmp_x[:1], tmp_x[1:]
tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W)
tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1).contiguous()
tmp_x[1:] = tmp_x[1:] + tmp_feats
# global block
tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C
cls_token = self.dec[j](cls_token, tmp_x)
if self.n_layers > 0:
weight = self.sigmoid(self.balance)
residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C
return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual)
else:
residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C
return self.proj(residual)
class VisionTransformer(nn.Module):
def __init__(
self,
# backbone
input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0.,
use_checkpoint=False, checkpoint_num=[0], t_size=8, kernel_size=3, dw_reduction=1.5,
temporal_downsample=True,
no_lmhra=-False, double_lmhra=True,
# global block
return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
cls_dropout=0.5, num_classes=400,
):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
padding = (kernel_size - 1) // 2
if temporal_downsample:
self.conv1 = nn.Conv3d(3, width, (kernel_size, patch_size, patch_size), (2, patch_size, patch_size), (padding, 0, 0), bias=False)
t_size = t_size // 2
else:
self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(
width, layers, heads, dw_reduction=dw_reduction,
backbone_drop_path_rate=backbone_drop_path_rate,
use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size,
no_lmhra=no_lmhra, double_lmhra=double_lmhra,
return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head,
mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout,
cls_dropout=cls_dropout, num_classes=num_classes,
)
def forward(self, x):
x = self.conv1(x) # shape = [*, width, grid, grid]
N, C, T, H, W = x.shape
x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C)
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
out = self.transformer(x)
return out
def inflate_weight(weight_2d, time_dim, center=True):
print(f'Init center: {center}')
if center:
weight_3d = torch.zeros(*weight_2d.shape)
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
middle_idx = time_dim // 2
weight_3d[:, :, middle_idx, :, :] = weight_2d
else:
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
weight_3d = weight_3d / time_dim
return weight_3d
def load_state_dict(model, state_dict):
state_dict_3d = model.state_dict()
for k in state_dict.keys():
if state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
print(f'Ignore: {k}')
continue
print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = inflate_weight(state_dict[k], time_dim)
model.load_state_dict(state_dict, strict=False)
def intern_action_b16(
pretrained=True, use_checkpoint=False, checkpoint_num=[0],
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0.,
temporal_downsample=True,
no_lmhra=False, double_lmhra=True,
return_list=[8, 9, 10, 11],
n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
mlp_dropout=[0.5, 0.5, 0.5, 0.5],
cls_dropout=0.5, num_classes=400,
):
model = VisionTransformer(
input_resolution=224,
patch_size=16,
width=768,
layers=12,
heads=12,
output_dim=512,
use_checkpoint=use_checkpoint,
checkpoint_num=checkpoint_num,
t_size=t_size,
dw_reduction=dw_reduction,
backbone_drop_path_rate=backbone_drop_path_rate,
temporal_downsample=temporal_downsample,
no_lmhra=no_lmhra,
double_lmhra=double_lmhra,
return_list=return_list,
n_layers=n_layers,
n_dim=n_dim,
n_head=n_head,
mlp_factor=mlp_factor,
drop_path_rate=drop_path_rate,
mlp_dropout=mlp_dropout,
cls_dropout=cls_dropout,
num_classes=num_classes,
)
if pretrained:
print('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu')
load_state_dict(model, state_dict)
return model.eval()
def intern_action_l14(
pretrained=True, use_checkpoint=False, checkpoint_num=[0],
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0.,
temporal_downsample=True,
no_lmhra=False, double_lmhra=True,
return_list=[20, 21, 22, 23],
n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0.,
mlp_dropout=[0.5, 0.5, 0.5, 0.5],
cls_dropout=0.5, num_classes=400,
):
model = VisionTransformer(
input_resolution=224,
patch_size=14,
width=1024,
layers=24,
heads=16,
output_dim=768,
use_checkpoint=use_checkpoint,
checkpoint_num=checkpoint_num,
t_size=t_size,
dw_reduction=dw_reduction,
backbone_drop_path_rate=backbone_drop_path_rate,
temporal_downsample=temporal_downsample,
no_lmhra=no_lmhra,
double_lmhra=double_lmhra,
return_list=return_list,
n_layers=n_layers,
n_dim=n_dim,
n_head=n_head,
mlp_factor=mlp_factor,
drop_path_rate=drop_path_rate,
mlp_dropout=mlp_dropout,
cls_dropout=cls_dropout,
num_classes=num_classes,
)
if pretrained:
print('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu')
load_state_dict(model, state_dict)
return model.eval()
def intern_action_l14_336(
pretrained=True, use_checkpoint=False, checkpoint_num=[0],
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0.,
no_temporal_downsample=True,
no_lmhra=False, double_lmhra=True,
return_list=[20, 21, 22, 23],
n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0.,
mlp_dropout=[0.5, 0.5, 0.5, 0.5],
cls_dropout=0.5, num_classes=400,
):
model = VisionTransformer(
input_resolution=336,
patch_size=14,
width=1024,
layers=24,
heads=16,
output_dim=768,
use_checkpoint=use_checkpoint,
checkpoint_num=checkpoint_num,
t_size=t_size,
dw_reduction=dw_reduction,
backbone_drop_path_rate=backbone_drop_path_rate,
no_temporal_downsample=no_temporal_downsample,
no_lmhra=no_lmhra,
double_lmhra=double_lmhra,
return_list=return_list,
n_layers=n_layers,
n_dim=n_dim,
n_head=n_head,
mlp_factor=mlp_factor,
drop_path_rate=drop_path_rate,
mlp_dropout=mlp_dropout,
cls_dropout=cls_dropout,
num_classes=num_classes,
)
if pretrained:
print('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
load_state_dict(model, state_dict)
return model.eval()
if __name__ == '__main__':
import time
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
import numpy as np
seed = 4217
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
num_frames = 16
model = intern_action_l14(
pretrained=False,
t_size=num_frames, backbone_drop_path_rate=0., drop_path_rate=0.,
dw_reduction=1.5,
no_lmhra=False,
temporal_downsample=True,
return_list=[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
mlp_dropout=[0.5]*16,
n_layers=16
)
print(model)
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224))
s = time.time()
print(flop_count_table(flops, max_depth=1))
print(time.time()-s)
|