File size: 16,575 Bytes
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# πŸ¦™ LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions

by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, 
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky.

<p align="center" "font-size:30px;">
  πŸ”₯πŸ”₯πŸ”₯
  <br>
  <b>
LaMa generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.</b>
</p>

[[Project page](https://advimman.github.io/lama-project/)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)] [[Casual GAN Papers Summary](https://www.casualganpapers.com/large-masks-fourier-convolutions-inpainting/LaMa-explained.html)]
 
<p align="center">
  <a href="https://colab.research.google.com/github/advimman/lama/blob/master//colab/LaMa_inpainting.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg"/>
  </a>
      <br>
   Try out in Google Colab
</p>

<p align="center">
  <img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/projects/lama_21/ezgif-4-0db51df695a8.gif" />
</p>


<p align="center">
  <img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/projects/lama_21/gif_for_lightning_v1_white.gif" />
</p>

# LaMa development
(Feel free to share your paper by creating an issue)
- Amazing results [paper](https://arxiv.org/abs/2206.13644) / [video](https://www.youtube.com/watch?v=gEukhOheWgE) / code https://github.com/advimman/lama/pull/112 / by Geomagical Labs ([geomagical.com](geomagical.com))
<p align="center">
  <img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/FeatureRefinement.png" />
</p>

# Non-official 3rd party apps:
(Feel free to share your app/implementation/demo by creating an issue)
- [https://cleanup.pictures](https://cleanup.pictures/) - a simple interactive object removal tool by [@cyrildiagne](https://twitter.com/cyrildiagne)
    - [lama-cleaner](https://github.com/Sanster/lama-cleaner) by [@Sanster](https://github.com/Sanster/lama-cleaner) is a self-host version of [https://cleanup.pictures](https://cleanup.pictures/)
- Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/lama) by [@AK391](https://github.com/AK391)
- Telegram bot [@MagicEraserBot](https://t.me/MagicEraserBot) by [@Moldoteck](https://github.com/Moldoteck), [code](https://github.com/Moldoteck/MagicEraser)
- [Auto-LaMa](https://github.com/andy971022/auto-lama) = DE:TR object detection + LaMa inpainting by [@andy971022](https://github.com/andy971022)
- [LAMA-Magic-Eraser-Local](https://github.com/zhaoyun0071/LAMA-Magic-Eraser-Local) = a standalone inpainting application built with PyQt5 by [@zhaoyun0071](https://github.com/zhaoyun0071)
- [Hama](https://www.hama.app/) - object removal with a smart brush which simplifies mask drawing.
- [ModelScope](https://www.modelscope.cn/models/damo/cv_fft_inpainting_lama/summary) = the largest Model Community in Chinese by  [@chenbinghui1](https://github.com/chenbinghui1).
- [LaMa with MaskDINO](https://github.com/qwopqwop200/lama-with-maskdino) = MaskDINO object detection + LaMa inpainting with refinement by [@qwopqwop200](https://github.com/qwopqwop200).

# Environment setup

Clone the repo:
`git clone https://github.com/advimman/lama.git`

There are three options of an environment:

1. Python virtualenv:

    ```
    virtualenv inpenv --python=/usr/bin/python3
    source inpenv/bin/activate
    pip install torch==1.8.0 torchvision==0.9.0
    
    cd lama
    pip install -r requirements.txt 
    ```

2. Conda
    
    ```
    % Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html
    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
    $HOME/miniconda/bin/conda init bash

    cd lama
    conda env create -f conda_env.yml
    conda activate lama
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y
    pip install pytorch-lightning==1.2.9
    ```
 
3. Docker: No actions are needed πŸŽ‰.

# Inference <a name="prediction"></a>

Run
```
cd lama
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)
```

**1. Download pre-trained models**

Install tool for yandex disk link extraction:

```
pip3 install wldhx.yadisk-direct
```

The best model (Places2, Places Challenge):
    
```    
curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
unzip big-lama.zip
```

All models (Places & CelebA-HQ):

```
curl -L $(yadisk-direct https://disk.yandex.ru/d/EgqaSnLohjuzAg) -o lama-models.zip
unzip lama-models.zip
```

**2. Prepare images and masks**

Download test images:

```
curl -L $(yadisk-direct https://disk.yandex.ru/d/xKQJZeVRk5vLlQ) -o LaMa_test_images.zip
unzip LaMa_test_images.zip
```
<details>
 <summary>OR prepare your data:</summary>
1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder. 

- You can use the [script](https://github.com/advimman/lama/blob/main/bin/gen_mask_dataset.py) for random masks generation. 
- Check the format of the files:
    ```    
    image1_mask001.png
    image1.png
    image2_mask001.png
    image2.png
    ```

2) Specify `image_suffix`, e.g. `.png` or `.jpg` or `_input.jpg` in `configs/prediction/default.yaml`.

</details>


**3. Predict**

On the host machine:

    python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output

**OR** in the docker
  
The following command will pull the docker image from Docker Hub and execute the prediction script
```
bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu
```
Docker cuda: TODO

**4. Predict with Refinement**

On the host machine:

    python3 bin/predict.py refine=True model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output

# Train and Eval

Make sure you run:

```
cd lama
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)
```

Then download models for _perceptual loss_:

    mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/
    wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth


## Places

⚠️ NB: FID/SSIM/LPIPS metric values for Places that we see in LaMa paper are computed on 30000 images that we produce in evaluation section below.
For more details on evaluation data check [[Section 3. Dataset splits in Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf#subsection.3.1)]  ⚠️

On the host machine:

    # Download data from http://places2.csail.mit.edu/download.html
    # Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section
    wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar
    wget http://data.csail.mit.edu/places/places365/val_large.tar
    wget http://data.csail.mit.edu/places/places365/test_large.tar

    # Unpack train/test/val data and create .yaml config for it
    bash fetch_data/places_standard_train_prepare.sh
    bash fetch_data/places_standard_test_val_prepare.sh
    
    # Sample images for test and viz at the end of epoch
    bash fetch_data/places_standard_test_val_sample.sh
    bash fetch_data/places_standard_test_val_gen_masks.sh

    # Run training
    python3 bin/train.py -cn lama-fourier location=places_standard

    # To evaluate trained model and report metrics as in our paper
    # we need to sample previously unseen 30k images and generate masks for them
    bash fetch_data/places_standard_evaluation_prepare_data.sh
    
    # Infer model on thick/thin/medium masks in 256 and 512 and run evaluation 
    # like this:
    python3 bin/predict.py \
    model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \
    indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
    outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt

    python3 bin/evaluate_predicts.py \
    $(pwd)/configs/eval2_gpu.yaml \
    $(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
    $(pwd)/inference/random_thick_512 \
    $(pwd)/inference/random_thick_512_metrics.csv

    
    
Docker: TODO
    
## CelebA
On the host machine:

    # Make shure you are in lama folder
    cd lama
    export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)

    # Download CelebA-HQ dataset
    # Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P
    
    # unzip & split into train/test/visualization & create config for it
    bash fetch_data/celebahq_dataset_prepare.sh

    # generate masks for test and visual_test at the end of epoch
    bash fetch_data/celebahq_gen_masks.sh

    # Run training
    python3 bin/train.py -cn lama-fourier-celeba data.batch_size=10

    # Infer model on thick/thin/medium masks in 256 and run evaluation 
    # like this:
    python3 bin/predict.py \
    model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier-celeba_/ \
    indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \
    outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt
    
    
Docker: TODO

## Places Challenge 

On the host machine:

    # This script downloads multiple .tar files in parallel and unpacks them
    # Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama) 
    bash places_challenge_train_download.sh
    
    TODO: prepare
    TODO: train 
    TODO: eval
      
Docker: TODO

## Create your data

Please check bash scripts for data preparation and mask generation from CelebaHQ section,
if you stuck at one of the following steps.


On the host machine:

    # Make shure you are in lama folder
    cd lama
    export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)

    # You need to prepare following image folders:
    $ ls my_dataset
    train
    val_source # 2000 or more images
    visual_test_source # 100 or more images
    eval_source # 2000 or more images

    # LaMa generates random masks for the train data on the flight,
    # but needs fixed masks for test and visual_test for consistency of evaluation.

    # Suppose, we want to evaluate and pick best models 
    # on 512x512 val dataset  with thick/thin/medium masks 
    # And your images have .jpg extention:

    python3 bin/gen_mask_dataset.py \
    $(pwd)/configs/data_gen/random_<size>_512.yaml \ # thick, thin, medium
    my_dataset/val_source/ \
    my_dataset/val/random_<size>_512.yaml \# thick, thin, medium
    --ext jpg

    # So the mask generator will: 
    # 1. resize and crop val images and save them as .png
    # 2. generate masks
    
    ls my_dataset/val/random_medium_512/
    image1_crop000_mask000.png
    image1_crop000.png
    image2_crop000_mask000.png
    image2_crop000.png
    ...

    # Generate thick, thin, medium masks for visual_test folder:

    python3 bin/gen_mask_dataset.py \
    $(pwd)/configs/data_gen/random_<size>_512.yaml \  #thick, thin, medium
    my_dataset/visual_test_source/ \
    my_dataset/visual_test/random_<size>_512/ \ #thick, thin, medium
    --ext jpg
    

    ls my_dataset/visual_test/random_thick_512/
    image1_crop000_mask000.png
    image1_crop000.png
    image2_crop000_mask000.png
    image2_crop000.png
    ...

    # Same process for eval_source image folder:
    
    python3 bin/gen_mask_dataset.py \
    $(pwd)/configs/data_gen/random_<size>_512.yaml \  #thick, thin, medium
    my_dataset/eval_source/ \
    my_dataset/eval/random_<size>_512/ \ #thick, thin, medium
    --ext jpg
    


    # Generate location config file which locate these folders:
    
    touch my_dataset.yaml
    echo "data_root_dir: $(pwd)/my_dataset/" >> my_dataset.yaml
    echo "out_root_dir: $(pwd)/experiments/" >> my_dataset.yaml
    echo "tb_dir: $(pwd)/tb_logs/" >> my_dataset.yaml
    mv my_dataset.yaml ${PWD}/configs/training/location/


    # Check data config for consistency with my_dataset folder structure:
    $ cat ${PWD}/configs/training/data/abl-04-256-mh-dist
    ...
    train:
      indir: ${location.data_root_dir}/train
      ...
    val:
      indir: ${location.data_root_dir}/val
      img_suffix: .png
    visual_test:
      indir: ${location.data_root_dir}/visual_test
      img_suffix: .png


    # Run training
    python3 bin/train.py -cn lama-fourier location=my_dataset data.batch_size=10

    # Evaluation: LaMa training procedure picks best few models according to 
    # scores on my_dataset/val/ 

    # To evaluate one of your best models (i.e. at epoch=32) 
    # on previously unseen my_dataset/eval do the following 
    # for thin, thick and medium:

    # infer:
    python3 bin/predict.py \
    model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \
    indir=$(pwd)/my_dataset/eval/random_<size>_512/ \
    outdir=$(pwd)/inference/my_dataset/random_<size>_512 \
    model.checkpoint=epoch32.ckpt

    # metrics calculation:
    python3 bin/evaluate_predicts.py \
    $(pwd)/configs/eval2_gpu.yaml \
    $(pwd)/my_dataset/eval/random_<size>_512/ \
    $(pwd)/inference/my_dataset/random_<size>_512 \
    $(pwd)/inference/my_dataset/random_<size>_512_metrics.csv

    
**OR** in the docker:

    TODO: train
    TODO: eval
    
# Hints

### Generate different kinds of masks
The following command will execute a script that generates random masks.

    bash docker/1_generate_masks_from_raw_images.sh \
        configs/data_gen/random_medium_512.yaml \
        /directory_with_input_images \
        /directory_where_to_store_images_and_masks \
        --ext png

The test data generation command stores images in the format,
which is suitable for [prediction](#prediction).

The table below describes which configs we used to generate different test sets from the paper.
Note that we *do not fix a random seed*, so the results will be slightly different each time.

|        | Places 512x512         | CelebA 256x256         |
|--------|------------------------|------------------------|
| Narrow | random_thin_512.yaml   | random_thin_256.yaml   |
| Medium | random_medium_512.yaml | random_medium_256.yaml |
| Wide   | random_thick_512.yaml  | random_thick_256.yaml  |

Feel free to change the config path (argument #1) to any other config in `configs/data_gen` 
or adjust config files themselves.

### Override parameters in configs
Also you can override parameters in config like this:

    python3 bin/train.py -cn <config> data.batch_size=10 run_title=my-title

Where .yaml file extension is omitted

### Models options 
Config names for models from paper (substitude into the training command): 

    * big-lama
    * big-lama-regular
    * lama-fourier
    * lama-regular
    * lama_small_train_masks

Which are seated in configs/training/folder

### Links
- All the data (models, test images, etc.) https://disk.yandex.ru/d/AmdeG-bIjmvSug
- Test images from the paper https://disk.yandex.ru/d/xKQJZeVRk5vLlQ
- The pre-trained models https://disk.yandex.ru/d/EgqaSnLohjuzAg
- The models for perceptual loss https://disk.yandex.ru/d/ncVmQlmT_kTemQ
- Our training logs are available at https://disk.yandex.ru/d/9Bt1wNSDS4jDkQ


### Training time & resources

TODO

## Acknowledgments

* Segmentation code and models if form [CSAILVision](https://github.com/CSAILVision/semantic-segmentation-pytorch).
* LPIPS metric is from [richzhang](https://github.com/richzhang/PerceptualSimilarity)
* SSIM is from [Po-Hsun-Su](https://github.com/Po-Hsun-Su/pytorch-ssim)
* FID is from [mseitzer](https://github.com/mseitzer/pytorch-fid)

## Citation
If you found this code helpful, please consider citing: 
```
@article{suvorov2021resolution,
  title={Resolution-robust Large Mask Inpainting with Fourier Convolutions},
  author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor},
  journal={arXiv preprint arXiv:2109.07161},
  year={2021}
}
```