File size: 2,359 Bytes
0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
import cv2
import numpy as np
import torch
from skimage import io
from skimage.transform import resize
from torch.utils.data import Dataset
from saicinpainting.evaluation.evaluator import InpaintingEvaluator
from saicinpainting.evaluation.losses.base_loss import SSIMScore, LPIPSScore, FIDScore
class SimpleImageDataset(Dataset):
def __init__(self, root_dir, image_size=(400, 600)):
self.root_dir = root_dir
self.files = sorted(os.listdir(root_dir))
self.image_size = image_size
def __getitem__(self, index):
img_name = os.path.join(self.root_dir, self.files[index])
image = io.imread(img_name)
image = resize(image, self.image_size, anti_aliasing=True)
image = torch.FloatTensor(image).permute(2, 0, 1)
return image
def __len__(self):
return len(self.files)
def create_rectangle_mask(height, width):
mask = np.ones((height, width))
up_left_corner = width // 4, height // 4
down_right_corner = (width - up_left_corner[0] - 1, height - up_left_corner[1] - 1)
cv2.rectangle(mask, up_left_corner, down_right_corner, (0, 0, 0), thickness=cv2.FILLED)
return mask
class Model():
def __call__(self, img_batch, mask_batch):
mean = (img_batch * mask_batch[:, None, :, :]).sum(dim=(2, 3)) / mask_batch.sum(dim=(1, 2))[:, None]
inpainted = mean[:, :, None, None] * (1 - mask_batch[:, None, :, :]) + img_batch * mask_batch[:, None, :, :]
return inpainted
class SimpleImageSquareMaskDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
self.mask = torch.FloatTensor(create_rectangle_mask(*self.dataset.image_size))
self.model = Model()
def __getitem__(self, index):
img = self.dataset[index]
mask = self.mask.clone()
inpainted = self.model(img[None, ...], mask[None, ...])
return dict(image=img, mask=mask, inpainted=inpainted)
def __len__(self):
return len(self.dataset)
dataset = SimpleImageDataset('imgs')
mask_dataset = SimpleImageSquareMaskDataset(dataset)
model = Model()
metrics = {
'ssim': SSIMScore(),
'lpips': LPIPSScore(),
'fid': FIDScore()
}
evaluator = InpaintingEvaluator(
mask_dataset, scores=metrics, batch_size=3, area_grouping=True
)
results = evaluator.evaluate(model)
print(results)
|