File size: 12,436 Bytes
3dfe8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from typing import List, Dict, Any, Tuple, Union
import copy
import torch

from ding.torch_utils import Adam, RMSprop, to_device
from ding.rl_utils import fqf_nstep_td_data, fqf_nstep_td_error, fqf_calculate_fraction_loss, \
    get_train_sample, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('fqf')
class FQFPolicy(DQNPolicy):
    r"""
    Overview:
        Policy class of FQF algorithm.

    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      fqf            | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     True           | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        6  | ``other.eps``      float    0.05           | Start value for epsilon decay. It's
           | ``.start``                                 | small because rainbow use noisy net.
        7  | ``other.eps``      float    0.05           | End value for epsilon decay.
           | ``.end``
        8  | ``discount_``      float    0.97,          | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        9  ``nstep``            int      3,             | N-step reward discount sum for target
                                         [3, 5]         | q_value estimation
        10 | ``learn.update``   int      3              | How many updates(iterations) to train  | this args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        11 ``learn.kappa``      float    /              | Threshold of Huber loss
        == ==================== ======== ============== ======================================== =======================
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='fqf',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (float) Reward's future discount factor, aka. gamma.
        discount_factor=0.97,
        # (int) N-step reward for target q_value estimation
        nstep=1,
        learn=dict(

            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=3,
            batch_size=64,
            learning_rate_fraction=2.5e-9,
            learning_rate_quantile=0.00005,
            # ==============================================================
            # The following configs are algorithm-specific
            # ==============================================================
            # (int) Frequence of target network update.
            target_update_freq=100,
            # (float) Threshold of Huber loss. In the FQF paper, this is denoted by kappa. Default to 1.0.
            kappa=1.0,
            # (float) Coefficient of entropy_loss.
            ent_coef=0,
            # (bool) Whether ignore done(usually for max step termination env)
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) Only one of [n_sample, n_step, n_episode] shoule be set
            # n_sample=8,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
        ),
        eval=dict(),
        # other config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Decay type. Support ['exp', 'linear'].
                type='exp',
                start=0.95,
                end=0.1,
                # (int) Decay length(env step)
                decay=10000,
            ),
            replay_buffer=dict(replay_buffer_size=10000, )
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'fqf', ['ding.model.template.q_learning']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init the optimizer, algorithm config, main and target models.
        """
        self._priority = self._cfg.priority
        # Optimizer
        self._fraction_loss_optimizer = RMSprop(
            self._model.head.quantiles_proposal.parameters(),
            lr=self._cfg.learn.learning_rate_fraction,
            alpha=0.95,
            eps=0.00001
        )
        self._quantile_loss_optimizer = Adam(
            list(self._model.head.Q.parameters()) + list(self._model.head.fqf_fc.parameters()) +
            list(self._model.encoder.parameters()),
            lr=self._cfg.learn.learning_rate_quantile,
            eps=1e-2 / self._cfg.learn.batch_size
        )

        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep
        self._kappa = self._cfg.learn.kappa
        self._ent_coef = self._cfg.learn.ent_coef

        # use model_wrapper for specialized demands of different modes
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='assign',
            update_kwargs={'freq': self._cfg.learn.target_update_freq}
        )
        self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss.
        """
        data = default_preprocess_learn(
            data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # Q-learning forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # Current q value (main model)
        ret = self._learn_model.forward(data['obs'])
        logit = ret['logit']  # [batch, action_dim(64)]
        q_value = ret['q']  # [batch, num_quantiles, action_dim(64)]
        quantiles = ret['quantiles']  # [batch, num_quantiles+1]
        quantiles_hats = ret['quantiles_hats']  # [batch, num_quantiles], requires_grad = False
        q_tau_i = ret['q_tau_i']  # [batch_size, num_quantiles-1, action_dim(64)]
        entropies = ret['entropies']  # [batch, 1]

        # Target q value
        with torch.no_grad():
            target_q_value = self._target_model.forward(data['next_obs'])['q']
            # Max q value action (main model)
            target_q_action = self._learn_model.forward(data['next_obs'])['action']

        data_n = fqf_nstep_td_data(
            q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], quantiles_hats,
            data['weight']
        )
        value_gamma = data.get('value_gamma')

        entropy_loss = -self._ent_coef * entropies.mean()

        fraction_loss = fqf_calculate_fraction_loss(q_tau_i.detach(), q_value, quantiles, data['action']) + entropy_loss

        quantile_loss, td_error_per_sample = fqf_nstep_td_error(
            data_n, self._gamma, nstep=self._nstep, kappa=self._kappa, value_gamma=value_gamma
        )

        # compute grad norm of a network's parameters
        def compute_grad_norm(model):
            return torch.norm(torch.stack([torch.norm(p.grad.detach(), 2.0) for p in model.parameters()]), 2.0)

        # ====================
        # fraction_proposal network update
        # ====================
        self._fraction_loss_optimizer.zero_grad()
        fraction_loss.backward(retain_graph=True)
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        with torch.no_grad():
            total_norm_quantiles_proposal = compute_grad_norm(self._model.head.quantiles_proposal)
        self._fraction_loss_optimizer.step()

        # ====================
        # Q-learning update
        # ====================
        self._quantile_loss_optimizer.zero_grad()
        quantile_loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        with torch.no_grad():
            total_norm_Q = compute_grad_norm(self._model.head.Q)
            total_norm_fqf_fc = compute_grad_norm(self._model.head.fqf_fc)
            total_norm_encoder = compute_grad_norm(self._model.encoder)
        self._quantile_loss_optimizer.step()

        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr_fraction_loss': self._fraction_loss_optimizer.defaults['lr'],
            'cur_lr_quantile_loss': self._quantile_loss_optimizer.defaults['lr'],
            'logit': logit.mean().item(),
            'fraction_loss': fraction_loss.item(),
            'quantile_loss': quantile_loss.item(),
            'total_norm_quantiles_proposal': total_norm_quantiles_proposal,
            'total_norm_Q': total_norm_Q,
            'total_norm_fqf_fc': total_norm_fqf_fc,
            'total_norm_encoder': total_norm_encoder,
            'priority': td_error_per_sample.abs().tolist(),
            # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
            '[histogram]action_distribution': data['action'],
            '[histogram]quantiles_hats': quantiles_hats[0],  # quantiles_hats.requires_grad = False
        }

    def _monitor_vars_learn(self) -> List[str]:
        return [
            'cur_lr_fraction_loss', 'cur_lr_quantile_loss', 'logit', 'fraction_loss', 'quantile_loss',
            'total_norm_quantiles_proposal', 'total_norm_Q', 'total_norm_fqf_fc', 'total_norm_encoder'
        ]

    def _state_dict_learn(self) -> Dict[str, Any]:
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer_fraction_loss': self._fraction_loss_optimizer.state_dict(),
            'optimizer_quantile_loss': self._quantile_loss_optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._fraction_loss_optimizer.load_state_dict(state_dict['optimizer_fraction_loss'])
        self._quantile_loss_optimizer.load_state_dict(state_dict['optimizer_quantile_loss'])