File size: 7,364 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
""" Translation main class """
import os
import torch
from onmt.constants import DefaultTokens
from onmt.utils.alignment import build_align_pharaoh
class TranslationBuilder(object):
"""
Build a word-based translation from the batch output
of translator and the underlying dictionaries.
Replacement based on "Addressing the Rare Word
Problem in Neural Machine Translation" :cite:`Luong2015b`
Args:
data ():
vocabs ():
n_best (int): number of translations produced
replace_unk (bool): replace unknown words using attention
"""
def __init__(self, data, vocabs, n_best=1, replace_unk=False, phrase_table=""):
self.data = data
self.vocabs = vocabs
self.n_best = n_best
self.replace_unk = replace_unk
self.phrase_table_dict = {}
if phrase_table != "" and os.path.exists(phrase_table):
with open(phrase_table) as phrase_table_fd:
for line in phrase_table_fd:
phrase_src, phrase_trg = line.rstrip("\n").split(
DefaultTokens.PHRASE_TABLE_SEPARATOR
)
self.phrase_table_dict[phrase_src] = phrase_trg
def _build_source_tokens(self, src):
tokens = []
for tok in src:
tokens.append(self.vocabs["src"].lookup_index(tok))
if tokens[-1] == DefaultTokens.PAD:
tokens = tokens[:-1]
break
return tokens
def _build_target_tokens(self, src, src_raw, pred, attn):
tokens = []
for tok in pred:
if tok < len(self.vocabs["tgt"]):
tokens.append(self.vocabs["tgt"].lookup_index(tok))
else:
vl = len(self.vocabs["tgt"])
tokens.append(self.vocabs["src"].lookup_index(tok - vl))
if tokens[-1] == DefaultTokens.EOS:
tokens = tokens[:-1]
break
if self.replace_unk and attn is not None and src is not None:
for i in range(len(tokens)):
if tokens[i] == DefaultTokens.UNK:
_, max_index = attn[i][: len(src_raw)].max(0)
tokens[i] = src_raw[max_index.item()]
if self.phrase_table_dict:
src_tok = src_raw[max_index.item()]
if src_tok in self.phrase_table_dict:
tokens[i] = self.phrase_table_dict[src_tok]
return tokens
def from_batch(self, translation_batch):
batch = translation_batch["batch"]
assert len(translation_batch["gold_score"]) == len(
translation_batch["predictions"]
)
batch_size = len(batch["srclen"])
preds, pred_score, attn, align, gold_score, indices = list(
zip(
*sorted(
zip(
translation_batch["predictions"],
translation_batch["scores"],
translation_batch["attention"],
translation_batch["alignment"],
translation_batch["gold_score"],
batch["indices"],
),
key=lambda x: x[-1],
)
)
)
if not any(align): # when align is a empty nested list
align = [None] * batch_size
# Sorting
inds, perm = torch.sort(batch["indices"])
src = batch["src"][:, :, 0].index_select(0, perm)
if "tgt" in batch.keys():
tgt = batch["tgt"][:, :, 0].index_select(0, perm)
else:
tgt = None
translations = []
for b in range(batch_size):
if src is not None:
src_raw = self._build_source_tokens(src[b, :])
else:
src_raw = None
pred_sents = [
self._build_target_tokens(
src[b, :] if src is not None else None,
src_raw,
preds[b][n],
align[b][n] if align[b] is not None else attn[b][n],
)
for n in range(self.n_best)
]
gold_sent = None
if tgt is not None:
gold_sent = self._build_target_tokens(
src[b, :] if src is not None else None,
src_raw,
tgt[b, 1:] if tgt is not None else None,
None,
)
translation = Translation(
src[b, :] if src is not None else None,
src_raw,
pred_sents,
attn[b],
pred_score[b],
gold_sent,
gold_score[b],
align[b],
)
translations.append(translation)
return translations
class Translation(object):
"""Container for a translated sentence.
Attributes:
src (LongTensor): Source word IDs.
src_raw (List[str]): Raw source words.
pred_sents (List[List[str]]): Words from the n-best translations.
pred_scores (List[List[float]]): Log-probs of n-best translations.
attns (List[FloatTensor]) : Attention distribution for each
translation.
gold_sent (List[str]): Words from gold translation.
gold_score (List[float]): Log-prob of gold translation.
word_aligns (List[FloatTensor]): Words Alignment distribution for
each translation.
"""
__slots__ = [
"src",
"src_raw",
"pred_sents",
"attns",
"pred_scores",
"gold_sent",
"gold_score",
"word_aligns",
]
def __init__(
self,
src,
src_raw,
pred_sents,
attn,
pred_scores,
tgt_sent,
gold_score,
word_aligns,
):
self.src = src
self.src_raw = src_raw
self.pred_sents = pred_sents
self.attns = attn
self.pred_scores = pred_scores
self.gold_sent = tgt_sent
self.gold_score = gold_score
self.word_aligns = word_aligns
def log(self, sent_number):
"""
Log translation.
"""
msg = ["\nSENT {}: {}\n".format(sent_number, self.src_raw)]
best_pred = self.pred_sents[0]
best_score = self.pred_scores[0]
pred_sent = " ".join(best_pred)
msg.append("PRED {}: {}\n".format(sent_number, pred_sent))
msg.append("PRED SCORE: {:.4f}\n".format(best_score))
if self.word_aligns is not None:
pred_align = self.word_aligns[0]
pred_align_pharaoh, _ = build_align_pharaoh(pred_align)
pred_align_sent = " ".join(pred_align_pharaoh)
msg.append("ALIGN: {}\n".format(pred_align_sent))
if self.gold_sent is not None:
tgt_sent = " ".join(self.gold_sent)
msg.append("GOLD {}: {}\n".format(sent_number, tgt_sent))
msg.append(("GOLD SCORE: {:.4f}\n".format(self.gold_score)))
if len(self.pred_sents) > 1:
msg.append("\nBEST HYP:\n")
for score, sent in zip(self.pred_scores, self.pred_sents):
msg.append("[{:.4f}] {}\n".format(score, sent))
return "".join(msg)
|