File size: 11,385 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch
import torch.nn.functional as F

from onmt.translate.decode_strategy import DecodeStrategy


def sample_topp(logits, keep_topp):
    sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=1)

    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
    sorted_indices_to_keep = cumulative_probs.lt(keep_topp)

    # keep indices until overflowing p
    cumsum_mask = sorted_indices_to_keep.cumsum(dim=1)
    last_included = cumsum_mask[:, -1:]
    last_included.clamp_(0, sorted_indices_to_keep.size()[1] - 1)
    sorted_indices_to_keep = sorted_indices_to_keep.scatter_(1, last_included, 1)

    # Set all logits that are not in the top-p to -10000.
    # This puts the probabilities close to 0.
    keep_indices = sorted_indices_to_keep.scatter(
        1,
        sorted_indices,
        sorted_indices_to_keep,
    )
    return logits.masked_fill(~keep_indices, -10000)


def sample_topk(logits, keep_topk):
    top_values, _ = torch.topk(logits, keep_topk, dim=1)
    kth_best = top_values[:, -1].view([-1, 1])
    kth_best = kth_best.repeat([1, logits.shape[1]]).float()

    # Set all logits that are not in the top-k to -10000.
    # This puts the probabilities close to 0.
    ignore = torch.lt(logits, kth_best)
    return logits.masked_fill(ignore, -10000)


def sample_with_temperature(logits, sampling_temp, keep_topk, keep_topp):
    """Select next tokens randomly from the top k possible next tokens.

    Samples from a categorical distribution over the ``keep_topk`` words using
    the category probabilities ``logits / sampling_temp``.

    Args:
        logits (FloatTensor): Shaped ``(batch_size, vocab_size)``.
            These can be logits (``(-inf, inf)``) or log-probs (``(-inf, 0]``).
            (The distribution actually uses the log-probabilities
            ``logits - logits.logsumexp(-1)``, which equals the logits if
            they are log-probabilities summing to 1.)
        sampling_temp (float): Used to scale down logits. The higher the
            value, the more likely it is that a non-max word will be
            sampled.
        keep_topk (int): This many words could potentially be chosen. The
            other logits are set to have probability 0.
        keep_topp (float): Keep most likely words until the cumulated
            probability is greater than p. If used with keep_topk: both
            conditions will be applied

    Returns:
        (LongTensor, FloatTensor):

        * topk_ids: Shaped ``(batch_size, 1)``. These are
          the sampled word indices in the output vocab.
        * topk_scores: Shaped ``(batch_size, 1)``. These
          are essentially ``(logits / sampling_temp)[topk_ids]``.
    """

    if sampling_temp == 0.0 or keep_topk == 1:
        # For temp=0.0, take the argmax to avoid divide-by-zero errors.
        # keep_topk=1 is also equivalent to argmax.
        topk_scores, topk_ids = logits.topk(1, dim=-1)
        if sampling_temp > 0:
            topk_scores /= sampling_temp
    else:
        logits = torch.div(logits, sampling_temp)
        if keep_topp > 0:
            logits = sample_topp(logits, keep_topp)
        if keep_topk > 0:
            logits = sample_topk(logits, keep_topk)
        dist = torch.distributions.Categorical(logits=logits)
        topk_ids = dist.sample().view(-1, 1)
        topk_scores = logits.gather(dim=1, index=topk_ids)
    return topk_ids, topk_scores


class GreedySearch(DecodeStrategy):
    """Select next tokens randomly from the top k possible next tokens.

    The ``scores`` attribute's lists are the score, after applying temperature,
    of the final prediction (either EOS or the final token in the event
    that ``max_length`` is reached)

    Args:
        pad (int): See base.
        bos (int): See base.
        eos (int): See base.
        unk (int): See base.
        start (int): See base.
        batch_size (int): See base.
        global_scorer (onmt.translate.GNMTGlobalScorer): Scorer instance.
        min_length (int): See base.
        max_length (int): See base.
        ban_unk_token (Boolean): See base.
        block_ngram_repeat (int): See base.
        exclusion_tokens (set[int]): See base.
        return_attention (bool): See base.
        max_length (int): See base.
        sampling_temp (float): See
            :func:`~onmt.translate.greedy_search.sample_with_temperature()`.
        keep_topk (int): See
            :func:`~onmt.translate.greedy_search.sample_with_temperature()`.
        keep_topp (float): See
            :func:`~onmt.translate.greedy_search.sample_with_temperature()`.
        beam_size (int): Number of beams to use.
    """

    def __init__(
        self,
        pad,
        bos,
        eos,
        unk,
        start,
        batch_size,
        global_scorer,
        min_length,
        block_ngram_repeat,
        exclusion_tokens,
        return_attention,
        max_length,
        sampling_temp,
        keep_topk,
        keep_topp,
        beam_size,
        ban_unk_token,
    ):
        super(GreedySearch, self).__init__(
            pad,
            bos,
            eos,
            unk,
            start,
            batch_size,
            beam_size,
            global_scorer,
            min_length,
            block_ngram_repeat,
            exclusion_tokens,
            return_attention,
            max_length,
            ban_unk_token,
        )
        self.sampling_temp = sampling_temp
        self.keep_topk = keep_topk
        self.keep_topp = keep_topp
        self.topk_scores = None
        self.beam_size = beam_size

    def initialize(
        self, enc_out, src_len, src_map=None, device=None, target_prefix=None
    ):
        """Initialize for decoding."""
        (fn_map_state, enc_out, src_map, target_prefix) = self.initialize_tile(
            enc_out, src_len, src_map, target_prefix
        )
        if device is None:
            device = self.get_device_from_enc_out(enc_out)

        super(GreedySearch, self).initialize(
            enc_out, src_len, src_map, device, target_prefix
        )
        self.select_indices = torch.arange(
            self.batch_size * self.beam_size, dtype=torch.long, device=device
        )
        self.original_batch_idx = fn_map_state(
            torch.arange(self.batch_size, dtype=torch.long, device=device), dim=0
        )
        self.beams_scores = torch.zeros(
            (self.batch_size * self.beam_size, 1), dtype=torch.float, device=device
        )
        return fn_map_state, enc_out, self.src_len, src_map

    @property
    def current_predictions(self):
        return self.alive_seq[:, -1]

    @property
    def batch_offset(self):
        return self.select_indices

    def _pick(self, log_probs):
        """Function used to pick next tokens.

        Args:
            log_probs (FloatTensor): ``(batch_size, vocab_size)``.
        """
        # maybe fix some prediction at this step by modifying log_probs
        log_probs = self.target_prefixing(log_probs)
        topk_ids, topk_scores = sample_with_temperature(
            log_probs, self.sampling_temp, self.keep_topk, self.keep_topp
        )
        return topk_ids, topk_scores

    def align_select_indices(self):
        nb_finished_beams = self.is_finished.view(-1).size(
            0
        ) - self.select_indices.size(0)
        if nb_finished_beams:
            self.select_indices = torch.arange(
                self.select_indices.size(0),
                dtype=torch.long,
                device=self.select_indices.device,
            )

    def advance(self, log_probs, attn):
        """Select next tokens randomly from the top k possible next tokens.

        Args:
            log_probs (FloatTensor): Shaped ``(batch_size, vocab_size)``.
                These can be logits (``(-inf, inf)``) or log-probs
                (``(-inf, 0]``). (The distribution actually uses the
                log-probabilities ``logits - logits.logsumexp(-1)``,
                which equals the logits if they are log-probabilities summing
                to 1.)
            attn (FloatTensor): Shaped ``(1, B, inp_seq_len)``.
        """

        self.align_select_indices()

        self.ensure_min_length(log_probs)
        self.ensure_unk_removed(log_probs)
        self.block_ngram_repeats(log_probs)

        topk_ids, self.topk_scores = self._pick(log_probs)
        self.beams_scores += self.topk_scores

        self.is_finished = topk_ids.eq(self.eos)

        self.alive_seq = torch.cat([self.alive_seq, topk_ids], -1)
        if self.return_attention:
            if self.alive_attn is None:
                self.alive_attn = attn
            else:
                self.alive_attn = torch.cat([self.alive_attn, attn], 0)
        self.ensure_max_length()

    def update_finished(self):
        """Finalize scores and predictions."""
        # shape: (sum(~ self.is_finished), 1)
        finished_batches = self.is_finished.view(-1).nonzero(as_tuple=False)
        step = len(self)
        length_penalty = self.global_scorer.length_penalty(
            step, alpha=self.global_scorer.alpha
        )

        for b in finished_batches.view(-1):
            b_orig = self.original_batch_idx[b]
            score = self.beams_scores[b, 0] / length_penalty
            pred = self.alive_seq[b, 1:]
            attention = (
                self.alive_attn[:, b, : self.src_len[b]]
                if self.alive_attn is not None
                else []
            )
            self.hypotheses[b_orig].append((score, pred, attention))
        self.done = self.is_finished.all()
        if self.done:
            for b in range(self.batch_size):
                best_hyp = sorted(self.hypotheses[b], key=lambda x: x[0], reverse=True)
                for score, pred, attn in best_hyp:
                    self.scores[b].append(score)
                    self.predictions[b].append(pred)
                    self.attention[b].append(attn)
            return
        is_alive = ~self.is_finished.view(-1)
        self.alive_seq = self.alive_seq[is_alive]
        self.beams_scores = self.beams_scores[is_alive]
        if self.alive_attn is not None:
            self.alive_attn = self.alive_attn[:, is_alive]
        self.select_indices = is_alive.nonzero(as_tuple=False).view(-1)
        self.original_batch_idx = self.original_batch_idx[is_alive]
        self.maybe_update_target_prefix(self.select_indices)


class GreedySearchLM(GreedySearch):
    def update_finished(self):
        super(GreedySearchLM, self).update_finished()
        self.update_src_len()

    def update_src_len(self):
        is_alive = ~self.is_finished.view(-1)
        self.src_len = self.src_len[is_alive]

    def advance(self, log_probs, attn):
        super(GreedySearchLM, self).advance(log_probs, attn)

        # in LM task src_len is associated with currently generated src
        # and therefore needs to follow the generation
        self.src_len += 1

    def initialize(self, src, src_len, src_map=None, device=None, target_prefix=None):
        """Initialize for decoding."""

        if device is None:
            device = src.device

        (fn_map_state, _, self.src_len, src_map) = super(
            GreedySearchLM, self
        ).initialize(None, src_len, src_map, device, target_prefix)

        return fn_map_state, src, self.src_len, src_map