File size: 7,435 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# -*- coding: utf-8 -*-
import os
import math
import codecs
import torch
import pyonmttok
from onmt.constants import DefaultTokens
from onmt.transforms import TransformPipe
class IterOnDevice(torch.utils.data.IterableDataset):
"""Sent items from `iterable` on `device_id` and yield."""
def __init__(self, iterable, device_id):
super(IterOnDevice).__init__()
self.iterable = iterable
self.device_id = device_id
# temporary as long as translation_server and scoring_preparator still use lists
if hasattr(iterable, "transforms"):
self.transform = TransformPipe.build_from(
[iterable.transforms[name] for name in iterable.transforms]
)
@staticmethod
def batch_to_device(tensor_batch, device_id):
"""Move `batch` to `device_id`, cpu if `device_id` < 0."""
device = torch.device(device_id) if device_id >= 0 else torch.device("cpu")
for key in tensor_batch.keys():
if key != "src_ex_vocab":
tensor_batch[key] = tensor_batch[key].to(device)
def __iter__(self):
for tensor_batch in self.iterable:
self.batch_to_device(tensor_batch, self.device_id)
yield tensor_batch
def build_vocab(opt, specials):
"""Build vocabs dict to be stored in the checkpoint
based on vocab files having each line [token, count]
Args:
opt: src_vocab, tgt_vocab, n_src_feats
Return:
vocabs: {'src': pyonmttok.Vocab, 'tgt': pyonmttok.Vocab,
'src_feats' : [pyonmttok.Vocab, ...]},
'data_task': seq2seq or lm
'decoder_start_token': DefaultTokens.BOS
}
"""
def _pad_vocab_to_multiple(vocab, multiple):
vocab_size = len(vocab)
if vocab_size % multiple == 0:
return vocab
target_size = int(math.ceil(vocab_size / multiple)) * multiple
for i in range(target_size - vocab_size):
vocab.add_token(DefaultTokens.VOCAB_PAD + str(i))
return vocab
default_specials = opt.default_specials
vocabs = {}
src_vocab = _read_vocab_file(opt.src_vocab, opt.src_words_min_frequency)
src_specials = [
item for item in (default_specials + specials["src"]) if item not in src_vocab
]
if DefaultTokens.SEP in src_specials and (
"<0x0A>" in src_vocab or "Ċ" in src_vocab
):
# this is hack: if the special separator ⦅newline⦆is returned because of the
# "docify" transform.get_specials we don't add it if the corresponding newline code
# is already included in the sentencepiece or BPE-with-gpt2-pretok.
src_specials.remove(DefaultTokens.SEP)
src_vocab = pyonmttok.build_vocab_from_tokens(
src_vocab, maximum_size=opt.src_vocab_size, special_tokens=src_specials
)
src_vocab.default_id = src_vocab[DefaultTokens.UNK]
if opt.vocab_size_multiple > 1:
src_vocab = _pad_vocab_to_multiple(src_vocab, opt.vocab_size_multiple)
vocabs["src"] = src_vocab
if opt.share_vocab:
vocabs["tgt"] = src_vocab
else:
tgt_vocab = _read_vocab_file(opt.tgt_vocab, opt.tgt_words_min_frequency)
tgt_specials = [
item
for item in (default_specials + specials["tgt"])
if item not in tgt_vocab
]
if DefaultTokens.SEP in tgt_specials and (
"<0x0A>" in tgt_vocab or "Ċ" in src_vocab
):
tgt_specials.remove(DefaultTokens.SEP)
tgt_vocab = pyonmttok.build_vocab_from_tokens(
tgt_vocab, maximum_size=opt.tgt_vocab_size, special_tokens=tgt_specials
)
tgt_vocab.default_id = tgt_vocab[DefaultTokens.UNK]
if opt.vocab_size_multiple > 1:
tgt_vocab = _pad_vocab_to_multiple(tgt_vocab, opt.vocab_size_multiple)
vocabs["tgt"] = tgt_vocab
if opt.n_src_feats > 0:
src_feats_vocabs = []
for i in range(opt.n_src_feats):
src_f_vocab = _read_vocab_file(f"{opt.src_vocab}_feat{i}", 1)
src_f_vocab = pyonmttok.build_vocab_from_tokens(
src_f_vocab,
maximum_size=0,
minimum_frequency=1,
special_tokens=default_specials,
)
src_f_vocab.default_id = src_f_vocab[DefaultTokens.UNK]
if opt.vocab_size_multiple > 1:
src_f_vocab = _pad_vocab_to_multiple(
src_f_vocab, opt.vocab_size_multiple
)
src_feats_vocabs.append(src_f_vocab)
vocabs["src_feats"] = src_feats_vocabs
vocabs["data_task"] = opt.data_task
vocabs["decoder_start_token"] = opt.decoder_start_token
return vocabs
def _read_vocab_file(vocab_path, min_count):
"""Loads a vocabulary from the given path.
Args:
vocab_path (str): Path to utf-8 text file containing vocabulary.
Each token should be on a line, may followed with a count number
seperate by space if `with_count`. No extra whitespace is allowed.
min_count (int): retains only tokens with min_count frequency.
"""
if not os.path.exists(vocab_path):
raise RuntimeError("Vocabulary not found at {}".format(vocab_path))
else:
with codecs.open(vocab_path, "rb", "utf-8") as f:
lines = [line.strip("\n") for line in f if line.strip("\n")]
first_line = lines[0].split(None, 1)
has_count = len(first_line) == 2 and first_line[-1].isdigit()
if has_count:
vocab = []
for line in lines:
if int(line.split(None, 1)[1]) >= min_count:
vocab.append(line.split(None, 1)[0])
else:
vocab = lines
return vocab
def vocabs_to_dict(vocabs):
"""
Convert a dict of pyonmttok vocabs
into a plain text dict to be saved in the checkpoint
"""
vocabs_dict = {}
vocabs_dict["src"] = vocabs["src"].ids_to_tokens
vocabs_dict["tgt"] = vocabs["tgt"].ids_to_tokens
if "src_feats" in vocabs.keys():
vocabs_dict["src_feats"] = [
feat_vocab.ids_to_tokens for feat_vocab in vocabs["src_feats"]
]
vocabs_dict["data_task"] = vocabs["data_task"]
if "decoder_start_token" in vocabs.keys():
vocabs_dict["decoder_start_token"] = vocabs["decoder_start_token"]
else:
vocabs_dict["decoder_start_token"] = DefaultTokens.BOS
return vocabs_dict
def dict_to_vocabs(vocabs_dict):
"""
Convert a dict formatted vocabs (as stored in a checkpoint)
into a dict of pyonmttok vocabs objects.
"""
vocabs = {}
vocabs["data_task"] = vocabs_dict["data_task"]
if "decoder_start_token" in vocabs_dict.keys():
vocabs["decoder_start_token"] = vocabs_dict["decoder_start_token"]
else:
vocabs["decoder_start_token"] = DefaultTokens.BOS
vocabs["src"] = pyonmttok.build_vocab_from_tokens(vocabs_dict["src"])
if vocabs_dict["src"] == vocabs_dict["tgt"]:
vocabs["tgt"] = vocabs["src"]
else:
vocabs["tgt"] = pyonmttok.build_vocab_from_tokens(vocabs_dict["tgt"])
if "src_feats" in vocabs_dict.keys():
vocabs["src_feats"] = []
for feat_vocab in vocabs_dict["src_feats"]:
vocabs["src_feats"].append(pyonmttok.build_vocab_from_tokens(feat_vocab))
return vocabs
|