File size: 11,602 Bytes
bdaed29 40afd1d bdaed29 40afd1d bdaed29 40afd1d bdaed29 40afd1d bdaed29 40afd1d bdaed29 40afd1d bdaed29 40afd1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import sys
sys.path.append('.')
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor
import argparse
import os
import spaces # Import spaces for ZEROGPU
class SimpleVideoLLaMA3Interface:
def __init__(self, model_path):
self.model_path = model_path
self.model = None
self.processor = None
self.image_formats = ("png", "jpg", "jpeg", "bmp", "gif", "webp")
self.video_formats = ("mp4", "avi", "mov", "mkv", "webm", "m4v", "3gp", "flv")
# Load processor on CPU (doesn't need GPU)
print(f"Loading processor from {model_path}...")
self.processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
print("Processor loaded successfully!")
def load_model(self):
"""Load model - this will be called inside GPU-decorated functions"""
if self.model is None:
print(f"Loading model from {self.model_path}...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
print("Model loaded successfully!")
@spaces.GPU(duration=120) # Allocate GPU for up to 120 seconds
@torch.inference_mode()
def predict(self, messages, do_sample=True, temperature=0.7, top_p=0.9, max_new_tokens=4096, fps=10, max_frames=256):
# Load model inside GPU context
self.load_model()
if not messages or len(messages) == 0:
return messages
# Convert Gradio messages to VideoLLaMA3 format with PROPER conversation history
conversation = []
# Group messages into proper conversation turns
i = 0
while i < len(messages):
if messages[i]["role"] == "user":
# Collect all consecutive user messages into one turn
user_content = []
while i < len(messages) and messages[i]["role"] == "user":
msg = messages[i]
print(f"DEBUG: Processing user message {i}: {msg}")
print(f"DEBUG: Content type: {type(msg['content'])}")
print(f"DEBUG: Content value: {msg['content']}")
# Handle different types of user content
if isinstance(msg["content"], str):
print(f"DEBUG: Adding text: {msg['content']}")
user_content.append({"type": "text", "text": msg["content"]})
elif isinstance(msg["content"], tuple) and len(msg["content"]) > 0:
# Handle file uploads from Gradio (comes as tuple)
file_path = msg["content"][0]
print(f"Processing file from tuple: {file_path}")
# Check if file exists and add appropriate content
if not os.path.exists(file_path):
print(f"ERROR: File does not exist: {file_path}")
user_content.append({"type": "text", "text": f"Error: Could not find file {file_path}"})
elif file_path.lower().endswith(self.video_formats):
print(f"β
DETECTED VIDEO: Adding video with fps={fps}, max_frames={max_frames}")
user_content.append({"type": "video", "video": {"video_path": file_path, "fps": fps, "max_frames": max_frames}})
elif file_path.lower().endswith(self.image_formats):
print(f"β
DETECTED IMAGE: Adding image: {file_path}")
user_content.append({"type": "image", "image": {"image_path": file_path}})
else:
print(f"β UNKNOWN FILE TYPE: {file_path}")
user_content.append({"type": "text", "text": f"Unsupported file type: {file_path}"})
elif isinstance(msg["content"], dict) and "path" in msg["content"]:
# Handle file uploads with path dict (backup method)
file_path = msg["content"]["path"]
print(f"Processing file from dict: {file_path}")
if not os.path.exists(file_path):
print(f"ERROR: File does not exist: {file_path}")
user_content.append({"type": "text", "text": f"Error: Could not find file {file_path}"})
elif file_path.lower().endswith(self.video_formats):
print(f"β
DETECTED VIDEO: Adding video with fps={fps}, max_frames={max_frames}")
user_content.append({"type": "video", "video": {"video_path": file_path, "fps": fps, "max_frames": max_frames}})
elif file_path.lower().endswith(self.image_formats):
print(f"β
DETECTED IMAGE: Adding image: {file_path}")
user_content.append({"type": "image", "image": {"image_path": file_path}})
else:
print(f"β UNKNOWN FILE TYPE: {file_path}")
user_content.append({"type": "text", "text": f"Unsupported file type: {file_path}"})
i += 1
# Add the complete user turn to conversation
if user_content:
conversation.append({"role": "user", "content": user_content})
print(f"π Added user turn with {len(user_content)} items: {[item.get('type', 'unknown') for item in user_content]}")
elif messages[i]["role"] == "assistant":
# Add assistant response
conversation.append({"role": "assistant", "content": messages[i]["content"]})
print(f"π€ Added assistant turn: {messages[i]['content'][:50]}...")
i += 1
if not conversation:
return messages
try:
# Debug: Print conversation structure
print(f"Conversation structure: {len(conversation)} turns")
for i, turn in enumerate(conversation):
role = turn["role"]
if role == "user":
content_types = [item.get("type", "unknown") for item in turn["content"] if isinstance(item, dict)]
print(f"Turn {i}: {role} - {content_types}")
else:
print(f"Turn {i}: {role} - text response")
inputs = self.processor(
conversation=conversation,
add_system_prompt=True,
add_generation_prompt=True,
return_tensors="pt"
)
inputs = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
output_ids = self.model.generate(
**inputs,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens
)
response = self.processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
# Extract just the response part (after the last assistant prompt)
# Find the last occurrence of common assistant indicators
for indicator in ["assistant", "Assistant", "ASSISTANT"]:
if indicator in response:
response = response.split(indicator)[-1].strip()
break
# Clean up common formatting artifacts
response = response.lstrip(":")
response = response.lstrip()
messages.append({"role": "assistant", "content": response})
return messages
except Exception as e:
error_msg = f"Error: {str(e)}"
print(f"Error in prediction: {error_msg}")
messages.append({"role": "assistant", "content": error_msg})
return messages
def create_interface(self):
with gr.Blocks(title="VideoLLaMA3 AI Curator") as interface:
gr.Markdown("# π¬ VideoLLaMA3 AI Curator\nUpload images or videos and ask questions!")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(type="messages", height=600)
with gr.Column(scale=1):
with gr.Tab("Input"):
video_input = gr.Video(sources=["upload"], label="Upload Video")
image_input = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
text_input = gr.Textbox(label="Your Message", placeholder="Ask about the image/video or chat...")
submit_btn = gr.Button("Send", variant="primary")
with gr.Tab("Settings"):
do_sample = gr.Checkbox(value=True, label="Do Sample")
temperature = gr.Slider(0.0, 1.0, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top P")
max_tokens = gr.Slider(256, 8192, value=4096, step=64, label="Max Tokens")
fps = gr.Slider(0.5, 15.0, value=10.0, label="Video FPS")
max_frames = gr.Slider(32, 512, value=256, step=8, label="Max Frames")
def add_file(history, file):
if file:
print(f"DEBUG: Gradio file input: {file}")
print(f"DEBUG: File type: {type(file)}")
history.append({"role": "user", "content": {"path": file}})
return history, None
def add_text(history, text):
if text.strip():
history.append({"role": "user", "content": text})
return history, ""
def respond(history, do_sample, temperature, top_p, max_tokens, fps, max_frames):
# Only predict if the last message is from user and we haven't responded to it yet
if history and history[-1]["role"] == "user":
return self.predict(history, do_sample, temperature, top_p, max_tokens, fps, max_frames)
return history
video_input.change(add_file, [chatbot, video_input], [chatbot, video_input])
image_input.change(add_file, [chatbot, image_input], [chatbot, image_input])
text_input.submit(add_text, [chatbot, text_input], [chatbot, text_input]).then(
respond, [chatbot, do_sample, temperature, top_p, max_tokens, fps, max_frames], [chatbot]
)
submit_btn.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(
respond, [chatbot, do_sample, temperature, top_p, max_tokens, fps, max_frames], [chatbot]
)
return interface
# For Hugging Face Spaces
app = SimpleVideoLLaMA3Interface("DAMO-NLP-SG/VideoLLaMA3-7B")
interface = app.create_interface()
if __name__ == "__main__":
interface.launch() |