Spaces:
Running
Running
File size: 8,803 Bytes
a9dca21 10e7638 f83d6df fc23f51 f83d6df a9dca21 f83d6df a9dca21 f83d6df a9dca21 f83d6df 63f9780 f83d6df 63f9780 87e2629 f83d6df 87e2629 f83d6df e1255d1 f83d6df a9dca21 f83d6df 63f9780 f83d6df a9dca21 f83d6df e1255d1 f83d6df fc23f51 f83d6df e1255d1 f83d6df a9dca21 d140f7d f83d6df d140f7d f83d6df 87e2629 f83d6df 87e2629 f83d6df 63f9780 d140f7d f83d6df a9dca21 f83d6df a9dca21 f83d6df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# benchmark.py (Updated for Named Datasets)
#
import os
import json
import time
from datetime import datetime
from typing import List, Dict, Optional, Tuple
from pathlib import Path
import math
from geo_bot import GeoBot
from config import get_data_paths, MODELS_CONFIG, SUCCESS_THRESHOLD_KM, get_model_class
class MapGuesserBenchmark:
def __init__(self, dataset_name: str = "default", headless: bool = False):
self.dataset_name = dataset_name
self.data_paths = get_data_paths(dataset_name)
self.headless = headless
self.golden_labels = self.load_golden_labels()
print(
f"π Loaded {len(self.golden_labels)} samples from dataset '{dataset_name}'"
)
def load_golden_labels(self) -> List[Dict]:
try:
with open(self.data_paths["golden_labels"], "r") as f:
return json.load(f).get("samples", [])
except Exception:
return []
def calculate_distance(
self, true_coords: Dict, predicted_coords: Optional[Tuple[float, float]]
) -> Optional[float]:
if not predicted_coords or "lat" not in true_coords or "lng" not in true_coords:
return None
try:
true_lat, true_lng = true_coords["lat"], true_coords["lng"]
pred_lat, pred_lng = predicted_coords
R = 6371
lat1, lon1, lat2, lon2 = map(
math.radians, [true_lat, true_lng, pred_lat, pred_lng]
)
a = (
math.sin((dlat := lat2 - lat1) / 2) ** 2
+ math.cos(lat1)
* math.cos(lat2)
* math.sin((dlon := lon2 - lon1) / 2) ** 2
)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
return R * c
except Exception:
return None
def run_benchmark(
self,
models: Optional[List[str]] = None,
max_samples: Optional[int] = None,
temperature: float = 0.0,
**kwargs,
) -> Dict:
if not self.golden_labels:
raise ValueError(
f"No golden labels available in dataset '{self.dataset_name}'."
)
models_to_test = models or list(MODELS_CONFIG.keys())
num_to_test = (
min(max_samples, len(self.golden_labels))
if max_samples is not None
else len(self.golden_labels)
)
test_samples = self.golden_labels[:num_to_test]
print(f"π Starting benchmark on dataset '{self.dataset_name}':")
print(f" Models: {models_to_test}")
print(f" Samples: {len(test_samples)}")
print(f" Temperature: {temperature}")
all_results = []
for model_name in models_to_test:
print(f"\nπ€ Testing model: {model_name}")
model_config = MODELS_CONFIG[model_name]
model_class = get_model_class(model_config["class"])
model_class_name = model_config["model_name"]
try:
with GeoBot(
model=model_class,
model_name=model_class_name,
use_selenium=True,
headless=self.headless,
temperature=temperature,
) as bot:
for i, sample in enumerate(test_samples):
print(
"########################################################"
)
print(f"π Sample {i + 1}/{len(test_samples)}")
try:
result = self.run_single_test_with_bot(bot, sample)
all_results.append(result)
status = (
"β
Success" if result.get("success") else "β Failed"
)
distance = result.get("distance_km")
dist_str = (
f"{distance:.1f} km" if distance is not None else "N/A"
)
print(f"{status} (Distance: {dist_str})")
except KeyboardInterrupt:
raise
except Exception as e:
print(f" β Test failed with unhandled exception: {e}")
all_results.append(
{
"model": model_name,
"sample_id": sample["id"],
"success": False,
"error": str(e),
}
)
except KeyboardInterrupt:
print("\nβΉοΈ Benchmark outer loop interrupted by user.")
break
self.save_results(all_results)
return self.generate_summary(all_results)
def run_single_test_with_bot(self, bot: GeoBot, location_data: Dict) -> Dict:
start_time = time.time()
assert bot.controller is not None
if not bot.controller.load_location_from_data(location_data):
return {
"success": False,
"error": "Failed to load location",
"model": bot.model_name,
"sample_id": location_data["id"],
}
bot.controller.setup_clean_environment()
screenshot = bot.take_screenshot()
if not screenshot:
return {
"success": False,
"error": "Failed to take screenshot",
"model": bot.model_name,
"sample_id": location_data["id"],
}
predicted_lat_lon = bot.analyze_image(screenshot)
inference_time = time.time() - start_time
true_coords = {"lat": location_data.get("lat"), "lng": location_data.get("lng")}
true_location = location_data["address"]
print(f"π True location: {true_location}")
print(f"π True coords: {true_coords}")
print(f"π Predicted coords: {predicted_lat_lon}")
distance_km = self.calculate_distance(true_coords, predicted_lat_lon)
is_success = distance_km is not None and distance_km <= SUCCESS_THRESHOLD_KM
return {
"sample_id": location_data["id"],
"model": bot.model_name,
"true_coordinates": true_coords,
"predicted_coordinates": predicted_lat_lon,
"distance_km": distance_km,
"inference_time": inference_time,
"success": is_success,
}
def save_results(self, results: List[Dict]):
if not results:
return
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_dir = Path(self.data_paths["results"])
results_dir.mkdir(parents=True, exist_ok=True)
results_file = results_dir / f"benchmark_results_{timestamp}.json"
output_data = {
"metadata": {
"dataset_name": self.dataset_name,
"timestamp": datetime.now().isoformat(),
},
"results": results,
}
with open(results_file, "w") as f:
json.dump(output_data, f, indent=2, default=str)
print(f"πΎ Results saved to {results_file}")
except Exception as e:
print(f"β Error saving results: {e}")
def generate_summary(self, results: List[Dict]) -> Dict:
summary = {}
by_model = {}
for r in results:
model = r.get("model", "unknown")
if model not in by_model:
by_model[model] = []
by_model[model].append(r)
for model, model_results in by_model.items():
successful_runs = [r for r in model_results if r.get("success")]
distances = [
r["distance_km"]
for r in model_results
if r.get("distance_km") is not None
]
if not model_results:
continue
summary[model] = {
"success_rate": len(successful_runs) / len(model_results)
if model_results
else 0,
"average_distance_km": sum(distances) / len(distances)
if distances
else None,
"median_distance_km": sorted(distances)[len(distances) // 2]
if distances
else None,
"min_distance_km": min(distances) if distances else None,
"max_distance_km": max(distances) if distances else None,
}
return summary
|