File size: 10,133 Bytes
fe0e9af
53cfd2d
01d78f2
 
fe0e9af
 
 
 
 
01d78f2
fe0e9af
 
 
 
 
01d78f2
 
 
fe0e9af
66e7228
fe0e9af
 
98a3ea7
fe0e9af
9b3e02d
fe0e9af
 
 
7a2e137
fe0e9af
 
4dc1508
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0e9af
 
 
aa3c57c
 
 
fe0e9af
aa3c57c
b9e8529
 
3247bd6
 
fe0e9af
53cfd2d
fe0e9af
 
98a3ea7
fe0e9af
01d78f2
fe0e9af
f4f4797
8dbbc84
fe0e9af
 
 
f4f4797
01d78f2
fe0e9af
 
f4f4797
98a3ea7
 
66e7228
 
 
ecba037
3b66adc
01d78f2
3b66adc
 
fe0e9af
0d920b9
01d78f2
0d920b9
b1e0e58
53cfd2d
01d78f2
53cfd2d
01d78f2
 
fe0e9af
 
 
01d78f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0e9af
edb05fc
4dc1508
 
 
 
 
f8734a4
4dc1508
 
 
 
 
11da24b
4dc1508
f8734a4
 
 
 
4dc1508
f8734a4
4dc1508
 
 
 
f8734a4
4dc1508
66e7228
edb05fc
fe0e9af
 
66e7228
98a3ea7
01d78f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c315a
01d78f2
 
4dc1508
 
01d78f2
4dc1508
 
 
 
01d78f2
4dc1508
 
 
 
01d78f2
 
 
 
 
fe0e9af
 
01d78f2
fe0e9af
 
01d78f2
4dc1508
 
 
 
01d78f2
 
 
4dc1508
01d78f2
 
 
 
 
 
 
 
 
4dc1508
 
 
 
 
 
edb05fc
01d78f2
1a7303a
875f311
01d78f2
 
4dc1508
 
 
01d78f2
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7303a
875f311
01d78f2
 
 
 
 
0f6a079
 
 
01d78f2
 
 
1a7303a
01d78f2
 
 
 
 
4dc1508
11da24b
4dc1508
 
01d78f2
 
 
 
 
 
 
 
 
 
 
 
 
 
571c966
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import logging
import time
from pathlib import Path

import gradio as gr
import nltk
from cleantext import clean

from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count

_here = Path(__file__).parent

nltk.download("stopwords")  # TODO=find where this requirement originates from

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)


def proc_submission(
    input_text: str,
    model_size: str,
    num_beams,
    token_batch_length,
    length_penalty,
    repetition_penalty,
    no_repeat_ngram_size,
    max_input_length: int = 768,
):
    """
    proc_submission - a helper function for the gradio module to process submissions

    Args:
        input_text (str): the input text to summarize
        model_size (str): the size of the model to use
        num_beams (int): the number of beams to use
        token_batch_length (int): the length of the token batches to use
        length_penalty (float): the length penalty to use
        repetition_penalty (float): the repetition penalty to use
        no_repeat_ngram_size (int): the no repeat ngram size to use
        max_input_length (int, optional): the maximum input length to use. Defaults to 768.

    Returns:
        str in HTML format, string of the summary, str of score
    """

    settings = {
        "length_penalty": float(length_penalty),
        "repetition_penalty": float(repetition_penalty),
        "no_repeat_ngram_size": int(no_repeat_ngram_size),
        "encoder_no_repeat_ngram_size": 4,
        "num_beams": int(num_beams),
        "min_length": 4,
        "max_length": int(token_batch_length // 4),
        "early_stopping": True,
        "do_sample": False,
    }
    st = time.perf_counter()
    history = {}
    clean_text = clean(input_text, lower=False)
    max_input_length = 1024 if model_size == "base" else max_input_length
    processed = truncate_word_count(clean_text, max_input_length)

    if processed["was_truncated"]:
        tr_in = processed["truncated_text"]
        msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
        logging.warning(msg)
        history["WARNING"] = msg
    else:
        tr_in = input_text
        msg = None

    _summaries = summarize_via_tokenbatches(
        tr_in,
        model_sm if model_size == "base" else model,
        tokenizer_sm if model_size == "base" else tokenizer,
        batch_length=token_batch_length,
        **settings,
    )
    sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
    sum_scores = [
        f" - Section {i}: {round(s['summary_score'],4)}"
        for i, s in enumerate(_summaries)
    ]

    sum_text_out = "".join(sum_text)
    history["Summary Scores"] = "<br><br>"
    scores_out = "".join(sum_scores)
    rt = round((time.perf_counter() - st) / 60, 2)
    print(f"Runtime: {rt} minutes")
    html = ""
    html += f"<p>Runtime: {rt} minutes on CPU</p>"
    if msg is not None:
        html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"

    html += ""

    return html, sum_text_out, scores_out


def load_single_example_text(
    example_path: str or Path,
):
    """
    load_single_example - a helper function for the gradio module to load examples
    Returns:
        list of str, the examples
    """
    global name_to_path
    full_ex_path = name_to_path[example_path]
    full_ex_path = Path(full_ex_path)
    # load the examples into a list
    with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
        raw_text = f.read()
        text = clean(raw_text, lower=False)
    return text


def load_uploaded_file(file_obj):
    """
    load_uploaded_file - process an uploaded file

    Args:
        file_obj (POTENTIALLY list): Gradio file object inside a list

    Returns:
        str, the uploaded file contents
    """

    # file_path = Path(file_obj[0].name)

    # check if mysterious file object is a list
    if isinstance(file_obj, list):
        file_obj = file_obj[0]
    file_path = Path(file_obj.name)
    try:
        with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
            raw_text = f.read()
        text = clean(raw_text, lower=False)
        return text
    except Exception as e:
        logging.info(f"Trying to load file with path {file_path}, error: {e}")
        return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."


if __name__ == "__main__":

    model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
    model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")

    name_to_path = load_example_filenames(_here / "examples")
    logging.info(f"Loaded {len(name_to_path)} examples")
    demo = gr.Blocks()

    with demo:

        gr.Markdown("# Long-Form Summarization: LED & BookSum")
        gr.Markdown(
            "A simple demo using a fine-tuned LED model to summarize long-form text. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab."
        )
        with gr.Column():

            gr.Markdown("## Load Inputs & Select Parameters")
            gr.Markdown(
                "Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example from the list below or upload a file."
            )

            model_size = gr.Radio(
                choices=["base", "large"], label="model size", value="large"
            )
            num_beams = gr.Radio(
                choices=[2, 3, 4],
                label="num beams",
                value=2,
            )
            token_batch_length = gr.Radio(
                choices=[512, 768, 1024],
                label="token batch length",
                value=512,
            )
            length_penalty = gr.inputs.Slider(
                minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05
            )
            repetition_penalty = gr.inputs.Slider(
                minimum=1.0,
                maximum=5.0,
                label="repetition penalty",
                default=3.5,
                step=0.1,
            )
            no_repeat_ngram_size = gr.Radio(
                choices=[2, 3, 4],
                label="no repeat ngram size",
                value=3,
            )
            example_name = gr.Dropdown(
                list(name_to_path.keys()),
                label="Choose an Example",
            )
            load_examples_button = gr.Button(
                "Load Example",
            )
            input_text = gr.Textbox(
                lines=6,
                label="input text",
                placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
            )
            gr.Markdown("Upload your own file:")
            uploaded_file = gr.File(
                label="Upload a text file",
                file_count=1,
                type="file",
            )
            load_file_button = gr.Button("Load Uploaded File")

            gr.Markdown("---")

        with gr.Column():
            gr.Markdown("## Generate Summary")
            gr.Markdown(
                "Summary generation should take approximately 1-2 minutes for most settings."
            )
            summarize_button = gr.Button("Summarize!")

            output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
            gr.Markdown("### Summary Output")
            summary_text = gr.Textbox(
                label="Summary", placeholder="The generated summary will appear here"
            )
            gr.Markdown(
                "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
            )
            summary_scores = gr.Textbox(
                label="Summary Scores", placeholder="Summary scores will appear here"
            )

            gr.Markdown("---")

        with gr.Column():
            gr.Markdown("## About the Model")
            gr.Markdown(
                "- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
            )
            gr.Markdown(
                "- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries."
            )
            gr.Markdown(
                "- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
            )
            gr.Markdown("---")

        load_examples_button.click(
            fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
        )

        load_file_button.click(
            fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
        )

        summarize_button.click(
            fn=proc_submission,
            inputs=[
                input_text,
                model_size,
                num_beams,
                token_batch_length,
                length_penalty,
                repetition_penalty,
                no_repeat_ngram_size,
            ],
            outputs=[output_text, summary_text, summary_scores],
        )

    demo.launch(enable_queue=True, share=True)