File size: 8,960 Bytes
ae18a5d 399ff39 ae18a5d 92b5358 ae18a5d b9d0820 ae18a5d b9d0820 ae18a5d 399ff39 ae18a5d 1ecf6ec ae18a5d 97259b9 ae18a5d b9d0820 ae18a5d b9d0820 ae18a5d df3817c b9d0820 df3817c b9d0820 df3817c 92b5358 df3817c b9d0820 ae18a5d df3817c b9d0820 248d035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import time
import re
import os
from ebooklib import epub
import random
import base64
import requests
import json
from huggingface_hub import InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
#https://github.com/mshumer/gpt-author/blob/main/Claude_Author.ipynb
#!pip install EbookLib
ANTHROPIC_API_KEY = "YOUR KEY HERE"
stability_api_key = "YOUR KEY HERE" # get it at https://beta.dreamstudio.ai/
def remove_first_line(test_string):
print("removing first line")
if test_string.startswith("Here") and test_string.split("\n")[0].strip().endswith(":"):
return re.sub(r'^.*\n', '', test_string, count=1)
return test_string
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate_text(prompt,max_tokens=2000,history=""):
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=random.randint(1,1000000000)
,
)
#content = prompt_template.format(**prompt_kwargs)
#if VERBOSE:
#print(LOG_PROMPT.format(content))
system_prompt="You are a world-class author. Write the requested content with great skill and attention to detail."
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
return resp
def generate_text_og(prompt, model="claude-3-haiku-20240307", max_tokens=2000, temperature=0.7):
headers = {
"x-api-key": ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01",
"content-type": "application/json"
}
data = {
"model": model,
"max_tokens": max_tokens,
"temperature": temperature,
"system": "You are a world-class author. Write the requested content with great skill and attention to detail.",
"messages": [{"role": "user", "content": prompt}],
}
response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=data)
response_text = response.json()['content'][0]['text']
return response_text.strip()
def generate_cover_prompt(plot):
response = generate_text(f"Plot: {plot}\n\n--\n\nDescribe the cover we should create, based on the plot. This should be two sentences long, maximum.")
return response
def generate_title(plot):
response = generate_text(f"Here is the plot for the book: {plot}\n\n--\n\nRespond with a great title for this book. Only respond with the title, nothing else is allowed.")
#return remove_first_line(response)
return response
def create_cover_image(plot):
plot = str(generate_cover_prompt(plot))
with open(f"cover.png", "wb") as f: # replace this if running locally, to where you store the cover file
f.write(base64.b64decode(image["base64"]))
def create_cover_image_OG(plot):
plot = str(generate_cover_prompt(plot))
engine_id = "stable-diffusion-xl-beta-v2-2-2"
api_host = os.getenv('API_HOST', 'https://api.stability.ai')
api_key = stability_api_key
if api_key is None:
raise Exception("Missing Stability API key.")
response = requests.post(
f"{api_host}/v1/generation/{engine_id}/text-to-image",
headers={
"Content-Type": "application/json",
"Accept": "application/json",
"Authorization": f"Bearer {api_key}"
},
json={
"text_prompts": [
{
"text": plot
}
],
"cfg_scale": 7,
"clip_guidance_preset": "FAST_BLUE",
"height": 768,
"width": 512,
"samples": 1,
"steps": 30,
},
)
if response.status_code != 200:
raise Exception("Non-200 response: " + str(response.text))
data = response.json()
for i, image in enumerate(data["artifacts"]):
with open(f"/content/cover.png", "wb") as f: # replace this if running locally, to where you store the cover file
f.write(base64.b64decode(image["base64"]))
def generate_chapter_title(chapter_content):
response = generate_text(f"Chapter Content:\n\n{chapter_content}\n\n--\n\nGenerate a concise and engaging title for this chapter based on its content. Respond with the title only, nothing else.")
return remove_first_line(response)
def create_epub(title, author, chapters, cover_image_path='cover.png'):
book = epub.EpubBook()
# Set metadata
book.set_identifier('id123456')
book.set_title(title)
book.set_language('en')
book.add_author(author)
# Add cover image
with open(cover_image_path, 'rb') as cover_file:
cover_image = cover_file.read()
book.set_cover('cover.png', cover_image)
# Create chapters and add them to the book
epub_chapters = []
for i, chapter_content in enumerate(chapters):
chapter_title = generate_chapter_title(chapter_content)
chapter_file_name = f'chapter_{i+1}.xhtml'
epub_chapter = epub.EpubHtml(title=chapter_title, file_name=chapter_file_name, lang='en')
# Add paragraph breaks
formatted_content = ''.join(f'{paragraph.strip()}' for paragraph in chapter_content.split('\n') if paragraph.strip())
epub_chapter.content = f'{chapter_title}{formatted_content}'
book.add_item(epub_chapter)
epub_chapters.append(epub_chapter)
# Define Table of Contents
book.toc = (epub_chapters)
# Add default NCX and Nav files
book.add_item(epub.EpubNcx())
book.add_item(epub.EpubNav())
# Define CSS style
style = '''
@namespace epub "http://www.idpf.org/2007/ops";
body {
font-family: Cambria, Liberation Serif, serif;
}
h1 {
text-align: left;
text-transform: uppercase;
font-weight: 200;
}
'''
# Add CSS file
nav_css = epub.EpubItem(uid="style_nav", file_name="style/nav.css", media_type="text/css", content=style)
book.add_item(nav_css)
# Create spine
book.spine = ['nav'] + epub_chapters
# Save the EPUB file
epub.write_epub(f'{title}.epub', book)
def generate_book(writing_style, book_description, num_chapters):
print("Generating plot outline...")
plot_prompt = f"Create a detailed plot outline for a {num_chapters}-chapter book in the {writing_style} style, based on the following description:\n\n{book_description}\n\nEach chapter should be at least 10 pages long."
plot_outline = generate_text(plot_prompt)
print("Plot outline generated.")
chapters = []
for i in range(num_chapters):
print(f"Generating chapter {i+1}...")
chapter_prompt = f"Previous Chapters:\n\n{' '.join(chapters)}\n\nWriting style: `{writing_style}`\n\nPlot Outline:\n\n{plot_outline}\n\nWrite chapter {i+1} of the book, ensuring it follows the plot outline and builds upon the previous chapters. The chapter should be at least 256 paragraphs long... we're going for lengthy yet exciting chapters here."
chapter = generate_text(chapter_prompt, max_tokens=4000)
chapters.append(remove_first_line(chapter))
print(f"Chapter {i+1} generated.")
time.sleep(1) # Add a short delay to avoid hitting rate limits
print("Compiling the book...")
book = "\n\n".join(chapters)
print("Book generated!")
return plot_outline, book, chapters
def main(writing_style, book_description, num_chapters):
try:
# Generate the book
plot_outline, book, chapters = generate_book(writing_style, book_description, num_chapters)
title = generate_title(plot_outline)
# Save the book to a file
with open(f"{title}.txt", "w") as file:
file.write(book)
#create_cover_image(plot_outline)
# Create the EPUB file
#create_epub(title, 'AI', chapters, 'cover.png')
print(f"Book saved as '{title}.txt'.")
return f'{title}.txt',[f'{title}.txt']
except Exception as e:
return e,None
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
writing_style=gr.Textbox(label="Enter the desired writing style: ")
book_description = gr.Textbox(label="Enter a high-level description of the book: ")
num_chapters = gr.Number(label="Enter the number of chapters: ",precision=0)
with gr.Column():
gen_btn=gr.Button("Generate Book")
outp=gr.HTML()
outf=gr.Files()
gen_btn.click(main,[writing_style,book_description,num_chapters],[outp,outf])
app.queue(default_concurrency_limit=10).launch() |