Spaces:
Runtime error
Runtime error
File size: 5,136 Bytes
eb65e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import gradio as gr
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from PIL import Image
from video_diffusion.inpaint_zoom.utils.zoom_out_utils import (
dummy,
preprocess_image,
preprocess_mask_image,
write_video,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
stable_paint_model_list = ["stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting"]
stable_paint_prompt_list = [
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art",
"A beautiful landscape of a mountain range with a lake in the foreground",
]
stable_paint_negative_prompt_list = [
"lurry, bad art, blurred, text, watermark",
]
class StableDiffusionZoomOut:
def __init__(self):
self.pipe = None
def load_model(self, model_id):
if self.pipe is None:
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
self.pipe.set_use_memory_efficient_attention_xformers(True)
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to("cuda")
self.pipe.safety_checker = dummy
self.g_cuda = torch.Generator(device="cuda")
return self.pipe
def generate_video(
self,
model_id,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
num_frames,
step_size,
):
pipe = self.load_model(model_id)
new_image = Image.new(mode="RGBA", size=(512, 512))
current_image, mask_image = preprocess_mask_image(new_image)
current_image = pipe(
prompt=[prompt],
negative_prompt=[negative_prompt],
image=current_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
all_frames = []
all_frames.append(current_image)
for i in range(num_frames):
prev_image = preprocess_image(current_image, step_size, 512)
current_image = prev_image
current_image, mask_image = preprocess_mask_image(current_image)
current_image = pipe(
prompt=[prompt],
negative_prompt=[negative_prompt],
image=current_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
).images[0]
current_image.paste(prev_image, mask=prev_image)
all_frames.append(current_image)
save_path = "output.mp4"
write_video(save_path, all_frames, fps=30)
return save_path
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_out_model_path = gr.Dropdown(
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id"
)
text2image_out_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt")
text2image_out_negative_prompt = gr.Textbox(
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt"
)
with gr.Row():
with gr.Column():
text2image_out_guidance_scale = gr.Slider(
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale"
)
text2image_out_num_inference_step = gr.Slider(
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step"
)
with gr.Row():
with gr.Column():
text2image_out_step_size = gr.Slider(
minimum=1, maximum=100, step=1, value=10, label="Step Size"
)
text2image_out_num_frames = gr.Slider(
minimum=1, maximum=100, step=1, value=10, label="Frames"
)
text2image_out_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Video(label="Output")
text2image_out_predict.click(
fn=StableDiffusionZoomOut().generate_video,
inputs=[
text2image_out_model_path,
text2image_out_prompt,
text2image_out_negative_prompt,
text2image_out_guidance_scale,
text2image_out_num_inference_step,
text2image_out_step_size,
text2image_out_num_frames,
],
outputs=output_image,
)
|