File size: 5,991 Bytes
e1f356a
86332dd
 
 
 
e1f356a
 
 
 
 
 
 
86332dd
 
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
46cc42f
d87354d
 
 
 
 
 
 
 
 
46cc42f
 
9df3294
46cc42f
 
2192ac7
9df3294
 
46cc42f
 
 
e1f356a
 
 
fa221ab
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d003fe
 
e1f356a
 
 
 
 
 
 
 
 
 
 
15d9ca5
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e1467e
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e985c
e1f356a
 
 
 
 
 
 
 
47f0019
e1f356a
15d9ca5
e1f356a
 
 
 
 
 
 
 
86332dd
e1f356a
 
 
c3d04a2
e1f356a
15d9ca5
e1f356a
 
86332dd
e1f356a
3e1467e
 
e1f356a
 
 
a6637aa
33fa1b3
e136f36
e670f0e
33fa1b3
e136f36
33fa1b3
a6637aa
33fa1b3
a6637aa
 
 
 
 
 
 
 
 
 
33fa1b3
 
 
344fa98
33fa1b3
 
 
 
344fa98
33fa1b3
 
 
 
d87354d
33fa1b3
 
344fa98
33fa1b3
 
 
 
 
 
 
 
e1f356a
7f6ba54
2f373b5
fa221ab
e1f356a
7f6ba54
05d25f5
e1f356a
05d25f5
7f6ba54
05d25f5
 
 
 
e1f356a
 
05d25f5
da0e32f
fa221ab
a6637aa
05d25f5
 
7f6ba54
fb04c80
e1f356a
a6637aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
#import urllib.request
#import requests
#import bs4
#import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from agent import (
    PREFIX,
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
)
api=HfApi()



client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)



def read_txt(txt_path):
    text=""
    with open(txt_path,"r") as f:
        text = f.read()
    f.close()
    print (text)
    return text

def read_pdf(pdf_path):
    from pypdf import PdfReader
    text=""
    reader = PdfReader(f'{pdf_path}')
    number_of_pages = len(reader.pages)
    for i in range(number_of_pages):
        page = reader.pages[i]
        text = f'{text}\n{page.extract_text()}'
    print (text)
    return text


VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 25000

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt


def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    **prompt_kwargs,
):
    print(seed)
    timestamp=datetime.datetime.now()
    
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose="Compile the provided data and complete the users task"
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
        #yield resp

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

def compress_data(c, instruct, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=4096,
            seed=seed,
            direction=instruct,
            knowledge=new_history,
            history=hist,
        )
        new_history = resp
        print (resp)
        out+=resp
        e=e+chunk
        s=s+chunk
    
    resp = run_gpt(
        COMPRESS_DATA_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=8192,
        seed=seed,
        direction=instruct,
        knowledge=new_history,
        history="All data has been recieved.",
    )
    print ("final" + resp)
    #history = "observation: {}\n".format(resp)
    return resp



def summarize(inp,history,data=None,files=None):
    if inp == "":
        inp = "Summarize this data"
        
    
    history = [(inp,"Working on it...")]
    yield "",history
    if files:
        try: 
            for i, file in enumerate(files):
                print (file)
                if file.endswith(".pdf"):
                    zz=read_pdf(file)
                    print (zz)
                    data=f'{data}\nFile Name ({file}):\n{zz}'
                elif file.endswith(".txt"):
                    zz=read_txt(file)
                    print (zz)
                    data=f'{data}\nFile Name ({file}):\n{zz}'                
        except Exception as e:
            data = "Error"
            print (e) 
    if data != "Error" and data != "":
        print(inp)
        out = str(data)
        rl = len(out)
        print(f'rl:: {rl}')
        c=1
        for i in str(out):
            if i == " " or i=="," or i=="\n":
                c +=1
        print (f'c:: {c}')
        
        rawp = compress_data(c,inp,out)    
    else:
        rawp = "Provide a valid data source"
    #print (rawp)
    #print (f'out:: {out}')
    #history += "observation: the search results are:\n {}\n".format(out)
    #task = "complete?"
    history.clear()
    history.append((inp,rawp))
    yield "", history       

#################################
def clear_fn():
    return "",[(None,None)]

with gr.Blocks() as app:
    gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer</h1><h3>Summarize Data of unlimited length</h3>""")
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=3):
            prompt=gr.Textbox(label = "Instructions (optional)")
        with gr.Column(scale=1):
            button=gr.Button()
        
        #models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
    with gr.Row():
        stop_button=gr.Button("Stop")
        clear_btn = gr.Button("Clear")
    with gr.Row():
        data=gr.Textbox(label="Input Data (paste text)", lines=6)
        file=gr.Files(label="Input File(s) (.pdf .txt)")
    #text=gr.JSON()
    #inp_query.change(search_models,inp_query,models_dd)
    clear_btn.click(clear_fn,None,[prompt,chatbot])
    go=button.click(summarize,[prompt,chatbot,data,file],[prompt,chatbot],concurrency_limit=1)
    stop_button.click(None,None,None,cancels=[go])
app.launch(server_port=7860,show_api=False)