Spaces:
Runtime error
Runtime error
File size: 2,764 Bytes
6364b8e 063d7d0 436d80d e452552 436d80d 6364b8e 436d80d 759d503 53c3b30 759d503 063d7d0 387ecb3 6364b8e 387ecb3 b69e293 6364b8e b69e293 436d80d bec3144 b69e293 eb7bd46 e452552 17da355 e452552 6364b8e 5c55b9f 387ecb3 b69e293 387ecb3 b69e293 387ecb3 b69e293 387ecb3 b69e293 387ecb3 6364b8e 759d503 836257c 759d503 387ecb3 e452552 5c55b9f 2671156 387ecb3 6364b8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
from numpy import exp
import pandas as pd
def softmax(vector):
e = exp(vector)
return e / e.sum()
models=[
"Nahrawy/AIorNot",
"arnolfokam/ai-generated-image-detector",
"umm-maybe/AI-image-detector",
]
def aiornot0(image):
labels = ["Real", "AI"]
mod=models[0]
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
model0 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor0(image, return_tensors="pt")
with torch.no_grad():
outputs = model0(**input)
print (outputs)
logits = outputs.logits
print (logits)
probability = softmax(logits)
print(f'PROBABILITY ::: {probability}')
print(probability[0][0])
px = pd.DataFrame(probability.numpy())
print(px)
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h3>Model used: <a href src='https://huggingface.co/models/{mod}'>{mod}</a><br>
This image is likely: {label}<br>
Probabilites<br>
AI: {px[0]}<br>
Real: {px[1]}"""
return gr.update(html_out)
def aiornot1(image):
labels = ["Real", "AI"]
mod=models[1]
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
model1 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor1(image, return_tensors="pt")
with torch.no_grad():
outputs = model1(**input)
print (outputs)
logits = outputs.logits
print (logits)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
def aiornot2(image):
labels = ["Real", "AI"]
mod=models[2]
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
model2 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor2(image, return_tensors="pt")
with torch.no_grad():
outputs = model2(**input)
print (outputs)
logits = outputs.logits
print (logits)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
inp = gr.Image()
mod_choose=gr.Number(value=0)
btn = gr.Button()
with gr.Column():
#outp0 = gr.Textbox(label=f'{models[0]}')
outp0 = gr.HTML("""""")
outp1 = gr.Textbox(label=f'{models[1]}')
outp2 = gr.Textbox(label=f'{models[2]}')
btn.click(aiornot0,[inp],outp0)
btn.click(aiornot1,[inp],outp1)
btn.click(aiornot2,[inp],outp2)
app.launch() |