File size: 7,382 Bytes
a4c8f8f
 
 
 
1830956
2cc61e5
a4c8f8f
1830956
a4c8f8f
 
 
 
1830956
 
 
 
 
 
 
 
a4c8f8f
 
 
 
 
1830956
 
a4c8f8f
f52be0e
a4c8f8f
 
 
 
 
1830956
a4c8f8f
 
 
 
 
 
 
 
1830956
a4c8f8f
1830956
a4c8f8f
 
1830956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4c8f8f
1830956
a4c8f8f
 
 
 
 
1830956
 
 
a4c8f8f
 
1830956
 
 
 
 
a4c8f8f
1830956
 
a4c8f8f
1830956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4c8f8f
1830956
 
 
 
 
 
 
 
 
 
 
 
 
 
a4c8f8f
1830956
 
 
a4c8f8f
 
1830956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4c8f8f
1830956
 
 
 
 
 
 
 
a4c8f8f
 
1830956
 
 
 
 
 
 
a4c8f8f
1830956
 
 
 
 
 
 
a4c8f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import pandas as pd
import streamlit as st
from q_learning_chatbot import QLearningChatbot
from xgb_mental_health import MentalHealthClassifier
from bm25_retreive_question import QuestionRetriever as QuestionRetriever_bm25
from Chromadb_storage import QuestionRetriever as QuestionRetriever_chromaDB
from llm_response_generator import LLLResponseGenerator
import os
# Streamlit UI
st.title("FOMO Fix - RL-based Mental Health Assistant")

# Define states and actions
states = [
    "Negative",
    "Moderately Negative",
    "Neutral",
    "Moderately Positive",
    "Positive",
]
actions = ["encouragement", "empathy", "spiritual"]

# Initialize Q-learning chatbot and mental health classifier
chatbot = QLearningChatbot(states, actions)

# Initialize MentalHealthClassifier
# data_path = "/Users/jaelinlee/Documents/projects/fomo/input/data.csv"
data_path = "data/data.csv"
tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
mental_classifier_model_path = "mental_health_model.pkl"
mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path)


# Function to display Q-table
def display_q_table(q_values, states, actions):
    q_table_dict = {"State": states}
    for i, action in enumerate(actions):
        q_table_dict[action] = q_values[:, i]

    q_table_df = pd.DataFrame(q_table_dict)
    return q_table_df


# Initialize memory
if "entered_text" not in st.session_state:
    st.session_state.entered_text = []
if "entered_mood" not in st.session_state:
    st.session_state.entered_mood = []

if "messages" not in st.session_state:
    st.session_state.messages = []

# Select Question Retriever
selected_retriever_option = st.sidebar.selectbox(
    "Choose Question Retriever", ("BM25", "ChromaDB")
)
if selected_retriever_option == "BM25":
    retriever = QuestionRetriever_bm25()
if selected_retriever_option == "ChromaDB":
    retriever = QuestionRetriever_chromaDB()

for message in st.session_state.messages:
    with st.chat_message(message.get("role")):
        st.write(message.get("content"))

# Collect user input
user_message = st.chat_input("Type your message here:")

# Take user input
if user_message:
    st.session_state.entered_text.append(user_message)

    st.session_state.messages.append({"role": "user", "content": user_message})
    with st.chat_message("user"):
        st.write(user_message)
    # Detect mental condition

    with st.spinner("Processing..."):
        mental_classifier.initialize_tokenizer(tokenizer_model_name)
        mental_classifier.preprocess_data()
        predicted_mental_category = mental_classifier.predict_category(user_message)
        print("Predicted mental health condition:", predicted_mental_category)

        # Detect sentiment
        user_sentiment = chatbot.detect_sentiment(user_message)

        # Retrieve question
        if user_sentiment in ["Negative", "Moderately Negative"]:
            question = retriever.get_response(user_message, predicted_mental_category)
            show_question = True
        else:
            show_question = False
            question = ""
            predicted_mental_category = ""

        # Update mood history / moode_trend
        chatbot.update_mood_history()
        mood_trend = chatbot.check_mood_trend()

        # Define rewards
        if user_sentiment in ["Positive", "Moderately Positive"]:
            if mood_trend == "increased":
                reward = +1
                mood_trend_symbol = " ⬆️"
            elif mood_trend == "unchanged":
                reward = +0.8
                mood_trend_symbol = ""
            else:  # decresed
                reward = -0.2
                mood_trend_symbol = " ⬇️"

        else:
            if mood_trend == "increased":
                reward = +1
                mood_trend_symbol = " ⬆️"
            elif mood_trend == "unchanged":
                reward = -0.2
                mood_trend_symbol = ""
            else:  # decreased
                reward = -1
                mood_trend_symbol = " ⬇️"

        print(
            f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑 -- (a)"
        )

        # Update Q-values
        chatbot.update_q_values(
            user_sentiment, chatbot.actions[0], reward, user_sentiment
        )

        # Get recommended action based on the updated Q-values
        ai_tone = chatbot.get_action(user_sentiment)
        print(ai_tone)
        # --------------
        # LLM Response Generator
        HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')

        llm_model = LLLResponseGenerator()
        temperature = 0.1
        max_length = 128

        template = """INSTRUCTIONS: {context}

            Respond to the user with a tone of {ai_tone}.

            Question asked to the user: {question}

            Response by the user: {user_text}
            Response;
            """
        context = "You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user."

        llm_response = llm_model.llm_inference(
            model_type="huggingface",
            question=question,
            prompt_template=template,
            context=context,
            ai_tone=ai_tone,
            questionnaire=predicted_mental_category,
            user_text=user_message,
            temperature=temperature,
            max_length=max_length,
        )
        st.session_state.messages.append({"role": "ai", "content": llm_response})

    with st.chat_message("ai"):
        st.markdown(llm_response)
    # st.write(f"{llm_response}")
    if show_question:
        st.write(f"{question}")
    # else:
    # user doesn't feel negative.
    # get question to ecourage even more positive behaviour

    st.subheader("Behind the Scence - What AI is doing:")
    st.write(
        f"- Detected User Tone: {user_sentiment} ({mood_trend.capitalize()}{mood_trend_symbol})"
    )
    if show_question:
        st.write(
            f"- Possible Mental Condition: {predicted_mental_category.capitalize()}"
        )
    st.write(f"- AI Tone: {ai_tone.capitalize()}")
    st.write(f"- Question retrieved from: {selected_retriever_option}")
    st.write(
        f"- If the user feels neagative or moderately negative, at the end of the AI response, it adds a mental health condition realted question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, and ADHD which are most associated with FOMO related to excessive social media usage."
    )
    st.write(
        f"- Below q-table is continously updated after each interaction with the user. If the user's mood increases, AI gets reward. Else, AI gets punishment."
    )

    # Display results
    # st.subheader(f"{user_sentiment.capitalize()}")
    # st.write("->" + f"{ai_tone.capitalize()}")
    # st.write(f"Mood {chatbot.check_mood_trend()}")
    # st.write(f"{ai_tone.capitalize()}, {chatbot.check_mood_trend()}")

    # Display Q-table
    st.dataframe(display_q_table(chatbot.q_values, states, actions))

    # Display mood history
    # st.subheader("Mood History (Recent 5):")
    # for mood_now in reversed(chatbot.mood_history[-5:]): #st.session_state.entered_mood[-5:], chatbot.mood_history[-5:]): #st.session_state.entered_text[-5:]
    #     st.write(f"{mood_now}")