File size: 5,630 Bytes
bd9870c 4a70236 bd9870c 4a70236 bd9870c 1765ebe bd9870c 4a70236 bd9870c 4a70236 bd9870c 4a70236 bd9870c 4a70236 bd9870c 4a70236 bd9870c 4a70236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
#---
#- Author: Jaelin Lee
#- Date: Mar 16, 2024
#- Description: Calls HuggingFace API to generate natural response.
#- Credit: The initial code is from Abhishek Dutta.
# Most of the code is kept as he created.
# I only added a modification to convert it to class.
# And, I tweaked the prompt to feed into the `streamlit_app.py` file.
#---
import os
from langchain_community.llms import HuggingFaceHub
from langchain_community.llms import OpenAI
# from langchain.llms import HuggingFaceHub, OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
import warnings
warnings.filterwarnings("ignore")
class LLLResponseGenerator():
def __init__(self):
print("initialized")
def llm_inference(
self,
model_type: str,
question: str,
prompt_template: str,
context: str,
ai_tone: str,
questionnaire: str,
user_text: str,
openai_model_name: str = "",
# hf_repo_id: str = "tiiuae/falcon-7b-instruct",
hf_repo_id: str = "mistralai/Mistral-7B-Instruct-v0.2",
temperature: float = 0.1,
max_length: int = 128,
) -> str:
"""Call HuggingFace/OpenAI model for inference
Given a question, prompt_template, and other parameters, this function calls the relevant
API to fetch LLM inference results.
Args:
model_str: Denotes the LLM vendor's name. Can be either 'huggingface' or 'openai'
question: The question to be asked to the LLM.
prompt_template: The prompt template itself.
context: Instructions for the LLM.
ai_tone: Can be either empathy, encouragement or suggest medical help.
questionnaire: Can be either depression, anxiety or adhd.
user_text: Response given by the user.
hf_repo_id: The Huggingface model's repo_id
temperature: (Default: 1.0). Range: Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, 0 means always take the highest score, 100.0 is getting closer to uniform probability.
max_length: Integer to define the maximum length in tokens of the output summary.
Returns:
A Python string which contains the inference result.
HuggingFace repo_id examples:
- google/flan-t5-xxl
- tiiuae/falcon-7b-instruct
"""
prompt = PromptTemplate(
template=prompt_template,
input_variables=[
"context",
"ai_tone",
"questionnaire",
"question",
"user_text",
],
)
if model_type == "openai":
# https://api.python.langchain.com/en/stable/llms/langchain.llms.openai.OpenAI.html#langchain.llms.openai.OpenAI
llm = OpenAI(
model_name=openai_model_name, temperature=temperature, max_tokens=max_length
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
return llm_chain.run(
context=context,
ai_tone=ai_tone,
questionnaire=questionnaire,
question=question,
user_text=user_text,
)
elif model_type == "huggingface":
# https://python.langchain.com/docs/integrations/llms/huggingface_hub
llm = HuggingFaceHub(
repo_id=hf_repo_id,
model_kwargs={"temperature": temperature, "max_length": max_length},
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(
context=context,
ai_tone=ai_tone,
questionnaire=questionnaire,
question=question,
user_text=user_text,
)
print(response)
# Extracting only the response part from the output
response_start_index = response.find("Response;")
return response[response_start_index + len("Response;"):].strip()
else:
print(
"Please use the correct value of model_type parameter: It can have a value of either openai or huggingface"
)
if __name__ == "__main__":
# Please ensure you have a .env file available with 'HUGGINGFACEHUB_API_TOKEN' and 'OPENAI_API_KEY' values.
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
context = "You are a mental health supporting non-medical assistant. DO NOT PROVIDE any medical advice with conviction."
ai_tone = "EMPATHY"
questionnaire = "ADHD"
question = (
"How often do you find yourself having trouble focusing on tasks or activities?"
)
user_text = "I feel distracted all the time, and I am never able to finish"
# The user may have signs of {questionnaire}.
template = """INSTRUCTIONS: {context}
Respond to the user with a tone of {ai_tone}.
Question asked to the user: {question}
Response by the user: {user_text}
Provide some advice and ask a relevant question back to the user.
Response;
"""
temperature = 0.1
max_length = 128
model = LLLResponseGenerator()
llm_response = model.llm_inference(
model_type="huggingface",
question=question,
prompt_template=template,
context=context,
ai_tone=ai_tone,
questionnaire=questionnaire,
user_text=user_text,
temperature=temperature,
max_length=max_length,
)
print(llm_response)
|