File size: 7,283 Bytes
2250554 7399125 a8ba6ba 2250554 fb9cc26 5e10bd7 2250554 0ca1b78 1c80fdd 0ca1b78 2250554 ce8e0a3 2250554 5e10bd7 1c44021 0ca1b78 1c44021 0ca1b78 9d8f96d 0ca1b78 2250554 0ca1b78 2250554 a5353a1 7d2bcce 2250554 a5353a1 16f846e 52593f1 71bf438 16f846e 2250554 52593f1 9940c4f 0ca1b78 9940c4f 0ca1b78 9940c4f 0ca1b78 9940c4f 52593f1 9940c4f 0ca1b78 9940c4f 0ca1b78 9940c4f 0ca1b78 9940c4f 0ca1b78 9940c4f 0ca1b78 52593f1 31e3bf4 94e7c0f ffbf5ed 52593f1 2250554 53fadf1 ba4eb63 ffbf5ed 8a6b4cf 6df9bd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import os
import pandas as pd
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_mic_recorder import speech_to_text
from model_pipeline import ModelPipeLine
from q_learning_chatbot import QLearningChatbot
from gtts import gTTS
from io import BytesIO
st.set_page_config(page_title="PeacePal")
#image to the sidebar
#image_path = os.path.join('images', 'sidebar.jpg')
#st.sidebar.image(image_path, use_column_width=True)
st.title('PeacePal 🌱')
mdl = ModelPipeLine()
# Now you can access the retriever attribute of the ModelPipeLine instance
retriever = mdl.retriever
final_chain = mdl.create_final_chain()
# Define states and actions
states = [
"Negative",
"Moderately Negative",
"Neutral",
"Moderately Positive",
"Positive",
]
# Initialize Q-learning chatbot and mental health classifier
chatbot = QLearningChatbot(states)
# Function to display Q-table
def display_q_table(q_values, states):
q_table_dict = {"State": states}
q_table_df = pd.DataFrame(q_table_dict)
return q_table_df
def text_to_speech(text):
# Use gTTS to convert text to speech
tts = gTTS(text=text, lang="en")
# Save the speech as bytes in memory
fp = BytesIO()
tts.write_to_fp(fp)
return fp
def speech_recognition_callback():
# Ensure that speech output is available
if st.session_state.my_stt_output is None:
st.session_state.p01_error_message = "Please record your response again."
return
# Clear any previous error messages
st.session_state.p01_error_message = None
# Store the speech output in the session state
st.session_state.speech_input = st.session_state.my_stt_output
## generated stores AI generated responses
if 'generated' not in st.session_state:
st.session_state['generated'] = ["I'm your Mental health Assistant, How may I help you?"]
## past stores User's questions
if 'past' not in st.session_state:
st.session_state['past'] = ['Hi!']
# Initialize memory
if "entered_text" not in st.session_state:
st.session_state.entered_text = []
if "entered_mood" not in st.session_state:
st.session_state.entered_mood = []
if "messages" not in st.session_state:
st.session_state.messages = []
if "user_sentiment" not in st.session_state:
st.session_state.user_sentiment = "Neutral"
if "mood_trend" not in st.session_state:
st.session_state.mood_trend = "Unchanged"
if "mood_trend_symbol" not in st.session_state:
st.session_state.mood_trend_symbol = ""
# Layout of input/response containers
colored_header(label='', description='', color_name='blue-30')
response_container = st.container()
input_container = st.container()
# User input
## Function for taking user provided prompt as input
def get_text():
input_text = st.text_input("You: ", "", key="input")
return input_text
def generate_response(prompt):
response = mdl.call_conversational_rag(prompt,final_chain)
return response['answer']
# Collect user input
# Add a radio button to choose input mode
input_mode = st.sidebar.radio("Select input mode:", ["Text", "Speech"])
user_message = None
if input_mode == "Speech":
# Use the speech_to_text function to capture speech input
speech_input = speech_to_text(key="my_stt", callback=speech_recognition_callback)
# Check if speech input is available
if "speech_input" in st.session_state and st.session_state.speech_input:
# Display the speech input
# st.text(f"Speech Input: {st.session_state.speech_input}")
# Process the speech input as a query
user_message = st.session_state.speech_input
st.session_state.speech_input = None
else:
user_message = st.chat_input("Type your message here:")
## Applying the user input box
with input_container:
if user_message:
st.session_state.entered_text.append(user_message)
st.session_state.messages.append({"role": "user", "content": user_message})
# Display the user's message
with st.chat_message("user"):
st.write(user_message)
# Process the user's message and generate a response
with st.spinner("Processing..."):
response = generate_response(user_message)
st.session_state.past.append(user_message)
st.session_state.messages.append({"role": "ai", "content": response})
# Detect sentiment
user_sentiment = chatbot.detect_sentiment(user_message)
# Update mood history / mood_trend
chatbot.update_mood_history()
mood_trend = chatbot.check_mood_trend()
# Define rewards
if user_sentiment in ["Positive", "Moderately Positive"]:
if mood_trend == "increased":
reward = +1
mood_trend_symbol = " ⬆️"
elif mood_trend == "unchanged":
reward = +0.8
mood_trend_symbol = ""
else: # decreased
reward = -0.2
mood_trend_symbol = " ⬇️"
else:
if mood_trend == "increased":
reward = +1
mood_trend_symbol = " ⬆️"
elif mood_trend == "unchanged":
reward = -0.2
mood_trend_symbol = ""
else: # decreased
reward = -1
mood_trend_symbol = " ⬇️"
print(f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑")
# Update Q-values
chatbot.update_q_values(user_sentiment, reward, user_sentiment)
# Display the AI's response
with st.chat_message("ai"):
st.markdown(response)
st.session_state.user_sentiment = user_sentiment
st.session_state.mood_trend = mood_trend
st.session_state.mood_trend_symbol = mood_trend_symbol
# Convert the response to speech
speech_fp = text_to_speech(response)
# Play the speech
st.audio(speech_fp, format='audio/mp3')
# Conditional display of AI generated responses as a function of user provided prompts
if st.session_state['generated']:
for i, generated_response in enumerate(st.session_state['generated']):
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
message(generated_response, key=str(i) + '_ai')
with st.sidebar.expander("Sentiment Analysis"):
# Use the values stored in session state
st.write(
f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})"
)
# Display Q-table
st.dataframe(display_q_table(chatbot.q_values, states)) |