File size: 5,515 Bytes
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8e45b
 
 
aa37927
eb8e45b
aa37927
eb8e45b
aa37927
eb8e45b
 
 
aa37927
 
 
eb8e45b
aa37927
 
 
eb8e45b
aa37927
 
 
 
eb8e45b
aa37927
 
eb8e45b
aa37927
 
eb8e45b
aa37927
 
 
 
 
 
 
 
 
 
eb8e45b
aa37927
eb8e45b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa37927
 
 
 
eb8e45b
 
 
 
aa37927
eb8e45b
 
 
 
 
 
 
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
eb8e45b
aa37927
 
 
 
 
 
 
eb8e45b
 
aa37927
 
 
 
 
 
 
 
 
 
 
eb8e45b
 
aa37927
 
 
 
 
eb8e45b
aa37927
eb8e45b
aa37927
 
 
 
eb8e45b
aa37927
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import glob
import json
import os
from dataclasses import dataclass

import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    average_accuracy: float
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(cls, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config", {})

        # Precision
        precision = Precision.from_str(config.get("model_dtype", "Unknown"))

        # Get model and org
        org_and_model = config.get("model_name", "").split("/", 1)
        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        results_data = data.get("results", {})

        # Extract per-subject accuracies
        per_subject_results = {}
        for task in Tasks:
            subject = task.value.benchmark
            accuracy = results_data.get(subject, None)
            if accuracy is not None:
                per_subject_results[subject] = accuracy

        average_accuracy = results_data.get('average', None)

        # Set other fields from config
        model_type = ModelType.from_str(config.get("model_type", ""))
        weight_type = WeightType[config.get("weight_type", "Original")]
        license = config.get("license", "?")
        likes = config.get("likes", 0)
        num_params = config.get("params", 0)
        date = config.get("submitted_time", "")
        still_on_hub = config.get("still_on_hub", True)
        architecture = config.get("architecture", "Unknown")

        # Create EvalResult instance
        return cls(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=per_subject_results,
            average_accuracy=average_accuracy,
            precision=precision,
            revision=config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture,
            model_type=model_type,
            weight_type=weight_type,
            license=license,
            likes=likes,
            num_params=num_params,
            date=date,
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: self.average_accuracy,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in Tasks:
            subject = task.value.benchmark
            data_dict[task.value.col_name] = self.results.get(subject, None)

        return data_dict


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        for file in files:
            if file.endswith(".json"):
                model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        # Store results
        eval_name = eval_result.eval_name
        eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict()  # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results